
Accessing and Interacting with Remote
SOAP-enabled Services

Reference:
1. Articles by Qusay H. Mahmoud,

http://www.sun.com

SOAP

• SOAP can be used on the server-side and
client-side. In other words, it is useful for
low-level as well as high-level developers.

• It is useful for service-oriented infrastructure,
allowing low-level distributed enterprise
systems developers to turn applications into
SOAP-enabled services that can be accessed,
remotely, from any device.

SOAP

• This can be accomplished by introducing a web
service that understands SOAP, and the end result
would be that applications can interoperate.

• It is useful for high-level application developers
who wish to develop clients that can access and
interact with SOAP-based services...such as the
ones offered by XMethods, Google, and Amazon

SOAP Messages

• The basic unit of interaction between a
SOAP client and a SOAP-enabled service is
a message.

• A SOAP message is basically an XML
document that consists of an envelope
enclosing any number of optional headers, a
body, and any optional MIME attachments
as shown in the next figure.

SOAP Envelope

• It is the root element of the XML document. This
element falls under the
http://schemas.xmlsoap.org/soap/envelope
namespace. An envelope is uniquely identified by its
namespace, and therefore processing tools can
immediately determine if a given XML document is a
SOAP message.

• But this capability or convenience comes at an
expense -- you cannot send arbitrary XML
documents; well, yes you can embed such documents
in the Body element, but this requires XML
validation with the web services engine.

SOAP Headers and Body

• SOAP Headers: They are the primary extensibility
mechanism in SOAP. Using headers, SOAP
messages can be extended with application-
specific information like authentication,
authorization, and payment processing.

• SOAP Body: It surrounds the information which is
core to the SOAP message. Any number of XML
elements can follow the Body element. This is a
nice extensible feature that can help with the
encoding of data in SOAP messages.

Attachments

• They can be entire XML documents, XML
fragments, text documents, images, or any
other content with a valid MIME type.

SOAP Message Syntax

• To get an idea of what a SOAP message
looks like, let's start by looking at the
following simple SOAP message:

<Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope
/">

<Body>
<getStockPrice/>
</Body>
</Envelope>

SOAP Message Syntax

• Here, the XML Namespace (xmlns) was used to
identify the Envelope as a SOAP Envelope.
Another important thing to note in the above
segment of SOAP code is that the getStockPrice
element is in the default namespace.

• XML Namespaces can be used to specify which
getStockPrice procedure or method should be
used, as in the following example:

SOAP Message Syntax
<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope
/">

<Body> <getStockPrice
xmlns="http://finance.sometradingcompany.com"/>
</Body>

</Envelope>

SOAP Message Syntax

• If you do qualify it, the end result may look
as follows, but this doesn't change the real
meaning of the message.

SOAP Message Syntax
<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
>

<SOAP-ENV:Body> <m:getStockPrice
xmlns:m="http://finance.sometradingcompany.com"
/>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Message Syntax

• Input is passed to services through
arguments.

• For example, the above SOAP message can
be made to look more professional by
adding an argument that represents the
name of the stock as follows:

SOAP Message Syntax
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/en
velope/">

<SOAP-ENV:Body> <m:getStockPrice
xmlns:m="http://finance.sometradingcomp
any.com">

<symbol>RIL</symbol>
</m:getStockPrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Message Syntax

• Note that the above SOAP message has no
header. An empty header can be added as
follows

SOAP Message Syntax
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/en
velope/">

<SOAP-ENV:Header/>
<SOAP-ENV:Body> <m:getStockPrice
xmlns:m="http://finance.sometradingcomp
any.com"/>

<symbol>RIL</symbol>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP with Attachments API for Java
(SAAJ)

• The SAAJ API allows you to read, write, send,
and receive SOAP messages over the Internet. The
examples here show you how to create a SOAP
connection, a SOAP message, populate the
message, send the message, and receive the reply.

• This API (version 1.2) conforms to SOAP 1.1 and
SOAP with Attachments, and supports the WS-I
basic Profile.

SAAJ

• The APIs defines the javax.xml.soap
package that provides the classes needed for
– creating and populating SOAP messages,
– extracting content from SOAP messages,
– sending SOAP request-response messages, and
– accessing/adding/modifying parts of SOAP

messages.

Creating a SOAP Message and
Handling the Response

• In SAAJ, SOAP messages are sent and
received over a connection that is
represented by a SOAPConnection object.

• The following segment of code shows how
to create a SOAPConnection object; it is a
good practice to close a connection once
you're finished using it, since this will
release resources:

Creating a SOAP Message and
Handling the Response

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();
SOAPConnection sc = scf.createConnection(); //

close the connection sc.close();

Creating a SOAP Message and
Handling the Response

• Note that an application can send SOAP
messages directly using a
SOAPConnection object, or indirectly
using a messaging provider such as JAXM.

• A message can be created using the
MessageFactory object as follows:

Creating a SOAP Message and
Handling the Response

MessageFactory mf =
MessageFactory.getInstance();

SOAPMessage msg = mf.createMessage();

Creating a SOAP Message and
Handling the Response

• The message created, msg, already contains
empty basic parts (envelope and header),
and these can be retrieved as follows.

• Note that the SOAPPart contains the
envelope, which in turn contains the header
and the body.

Creating a SOAP Message and
Handling the Response

SOAPPart sp = msg.getSOAPPart();
SOAPEnvelope envelope = sp.getEnvelope();
SOAPHeader header = envelope.getHeader();

SOAPBody body = envelope.getBody();

Creating a SOAP Message and
Handling the Response

• Another way to access the parts of the
message is by retrieving the header and the
body directly as follows:

Creating a SOAP Message and
Handling the Response

SOAPHeader header = msg.getSOAPHeader();

SOAPBody body = msg.getSOAPBody();

Creating a SOAP Message and
Handling the Response

• As mentioned earlier, the header is optional
and thus, if you are not using it, you can
delete it as follows:

Creating a SOAP Message and
Handling the Response

header.detachNode();

Creating a SOAP Message and
Handling the Response

• The next step is to populate the SOAPBody
with the actual message to be sent. In doing
so, you simply create an element specifying
the message to be invoked and its
argument(s).

• Here is an example:

Creating a SOAP Message and
Handling the Response

Name bodyName =
sf.createName("getStockPrice", "m",
"http://finance.sometradingcompany.com"
);

SOAPBodyElement bodyElement =
body.addBodyElement(bodyName);

Name name = sf.createName("symbol");
SOAPElement symbol =
bodyElement.addChildElement(name);

symbol.addTextNode(“RIL");

Creating a SOAP Message and
Handling the Response

• This segment of code will create a SOAP
message that looks as follows:

Creating a SOAP Message and
Handling the Response

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
>

<SOAP-ENV:Body> <m:getStockPrice
xmlns:m="http://finance.sometradingcompany.com"
/>

<symbol>RIL</symbol>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Creating a SOAP Message and
Handling the Response

• Before a message can be sent, you should
specify its destination, which can be
specified as a URI string such as:

Creating a SOAP Message and
Handling the Response

String destination = "http://...";
or

URL destination = new URL("http://...");

Creating a SOAP Message and
Handling the Response

• Now, the message is ready to be sent and
this is done using the call() method, which
blocks until it receives the returned
response represented in SOAPMessage.

SOAPMessage response = sc.call(msg, destination);

• The returned response, response, is a
SOAPMessage object and therefore has
the same format as the one sent.

Handling Faults

• Things do not always work according to plan.
• For example, a client may fail to authenticate with

an application (consider a developer that doesn't
have a Google key to interact with Google services).

• SOAP defines a mechanism for error handling that
is capable of identifying the source and cause of the
error.

• In addition, it allows for error-diagnostic
information to be exchanged by the parties involved
in the interaction.

Handling Faults

• This is accomplished through the notion of
a SOAP fault.

• As an example, consider the following
segment of a response message containing a
fault caused by the authentication failure:

Handling Faults
... <SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>Client.AuthenticationFailure
</faultcode>

<faultstring>Failed to authenticate
client</faultstring>

<faultactor>urn:X-
SomeService:SomeGatewayProblem</faculta
ctor>

</SOAP-ENV:Fault> </SOAP-ENV:Body> ...

Handling Faults

• The body of the response contains a single Fault
element.

• This informs the client that an error has occurred,
as well as some diagnostic information.

• The faultcode, which must always be present,
provides information that is helpful in identifying
the error -- this is not for human consumption
however.

Handling Faults

• The faultstring is the human-readable string
representing the error message.

• Finally, the faultactor specifies where in
the message path the error has occurred.

• Here is an example of how to retrieve this
information from a fault element using
SAAJ:

Handling Faults
// Using SAAJ to work with SOAP faults

if(responseBody.hasFault())
{ SOAPFault fault = responseBody.getFault();
Name code = fault.getFaultCodeAsName();
String string = fault.getFaultString();
String actor = fault.getFaultActor();
System.out.println("Fault contains: ");
System.out.println("Fault code:

"+code.getQualifiedName());
System.out.println("Fault string: "+string);
if(actor != null)

{ System.out.println("Actor: "+actor); } }

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

• This section provides a real-world sample
application to demonstrate the power of SAAJ. The
application is a SOAP client that can be used to
interact with the XMethods' Barnes and Noble
Price Quote service, which returns the price of a
book at bn.com given its ISBN number. To get a
feeling of how it works, try.

• To interact with this service, a SOAP request
similar to the one shown in Code Sample 1 is used.
Note that the ISBN would be different depending
on the user's input.

request.xml
<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>

<ns1:getPrice xmlns:ns1="urn:xmethods-
BNPriceCheck" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/s
oap/encoding/">

<isbn xsi:type="xsd:string">0596002432</isbn>
</ns1:getPrice>

</SOAP-ENV:Body> </SOAP-ENV:Envelope>

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

• Using SAAJ, the body of the above SOAP
request can be populated in a message as
follows:

A message
Name bodyName = sf.createName("getPrice",
"ns1", "urn:xmethods-BNPriceCheck");

SOAPBodyElement bodyElement =
body.addBodyElement(bodyName);

Name name = sf.createName("isbn");
SOAPElement isbn =
bodyElement.addChildElement(name);

isbn.addTextNode("0596002432");

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

• To execute SoapClient.java:
C:\j2eetutorial14\examples\saaj\myapp>C:\apache-

ant-1.6.1\bin\ant run
Buildfile: build.xml
init:
prepare:
build:
run:

[echo] Running SoapClient.
[java] SOAP Request Sent:

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

• Once the message is populated and sent to its
destination, the call() method blocks to receive a
response.

• The response is received in a SOAPMessage
that will have the same structure as the SOAP
request, and therefore you can process it to
retrieve the information needed (price).

• In this example, a transformer has been created to
retrieve the content of the reply and display it as
received. The response received is shown

response.xml
<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>

<ns1:getPriceResponse xmlns:ns1="urn:xmethods-
BNPriceCheck" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/s
oap/encoding/">

<return xsi:type="xsd:float">34.95</return>
</ns1:getPriceResponse>

</SOAP-ENV:Body> </SOAP-ENV:Envelope>

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

• A SOAP message can be processed by
retrieving the child elements and iterating
over them as follows.

• In this example, there is only one child
element.

Sample Application 1: (Using XMethods'
Barnes & Noble Price Quote Service)

SOAPBody responseBody =
reply.getSOAPBody();

Iterator iterator =
responseBody.getChildElements();

while(iterator.hasNext())
{ bodyElement = (SOAPBodyElement)
iterator.next(); String price =
bodyElement.getValue();

System.out.println("The price for book
with ISBN: is: "+ price); }

Reading the Message From a File
StreamSource msg = new StreamSource(new

FileInputStream("c:/request.xml"));

soapPart.setContent(msg);

Sun's JAX-RPC

• Sun's JAX-RPC is a Java API for XML-based
Remote Procedure Calls (RPC) that can be used to
easily develop Web services and web services
clients. The advantage of JAX-RPC is that it hides
the complexity of SOAP messages from the
developer.

• Using JAX-RPC, the developer doesn't need to
worry about constructing SOAP messages on
his/her own but instead can concentrate on the
application logic.

