
Fundamentals of

Distributed Computing

Sanjay Chaudhary

DA-IICT

2

Definition
Distributed System

ÅA distributed system is a collection of independent
computational resources and are connected with each other
with the help of networks, and it is capable of resolving a
task in a collaborative manner.

Distributed Computing

ÅDistributed computing deals with computational tasks to be
performed on distributed system(s). Distributed computing
uses multiple independent heterogeneous computational
resources, which are communicating with each other over a
network to perform a task. A distributed computational task
is likely to involve heterogeneous resources like computer
hardware, programming languages, operating systems and
other resources.

3

Distributed Systems

The Internet

a network host

work

stations a local network

4

Computers in a Distributed System

ÅWorkstations: computers used by end-users to

perform computing

ÅServer machines: computers which provide

resources and services

ÅPersonal Assistance Devices: handheld

computers connected to the system via a

wireless communication link.

Examples of Distributed System:

ÅNetwork of workstations, Internet, Intranet

5

Centralized vs. Distributed Computing

mainframe computer
workstation

network host

network link

terminal

centralized computing

distributed computing

6

Monolithic mainframe applications vs.

distributed applications

based onhttp://www.inprise.com/visibroker/papers/distributed/wp.html

ÅThe monolithic mainframe application architecture:

ïSeparate, single-function applications, such as order-entry or

billing

ïApplications cannot share data or other resources

ïDevelopers must create multiple instances of the same

functionality (service).

ïProprietary (user) interfaces

ÅThe distributed application architecture:

ï Integrated applications

ïApplications can share resources

ïA single instance of functionality (service) can be reused.

ïCommon user interfaces

7

Evolution of paradigms

ÅClient-server: Socket API, remote method invocation

ÅDistributed objects

ÅObject broker: CORBA

ÅNetwork service: Jini

ÅObject space: JavaSpaces

ÅMobile agents

ÅMessage oriented middleware (MOM): Java Message

Service

ÅCollaborative applications

8

Why distributed computing?

ÅEconomics: distributed systems allow the

pooling of resources, including CPU cycles,

data storage, input/output devices, and

services.

ÅReliability: a distributed system allow

replication of resources and/or services,

thus reducing service outage due to failures.

ÅThe Internet has become a universal

platform for distributed computing.

9

The Weaknesses and Strengths of

Distributed Computing

In any form of computing, there is always a
tradeoff in advantages and disadvantages

Some of the reasons for the popularity of
distributed computing :

ÅThe affordability of computers and
availability of network access

ÅResource sharing

ÅScalability

ÅFault Tolerance

10

The Weaknesses and Strengths of

Distributed Computing

The disadvantages of distributed computing:

ÅMultiple Points of Failures: the failure of

one or more participating computers, or one

or more network links, can spell trouble.

ÅSecurity Concerns: In a distributed system,

there are more opportunities for

unauthorized attack.

11

N-tier architecture by adding web server

12

N-tier Systems

13

Middleware

ÅMiddleware facilitates and manages the interaction
between applications across heterogeneous computing
platforms.

Å It is architectural solution to the problem of integrating a
collection of servers and applications under a common
service interface.

ÅMiddleware offers programming abstraction that hide
some of the complexities of building a distributed
application.

ÅThrough these programming abstractions, the developer
has access to functionality that otherwise would have to be
implemented from scratch.

14

Need for Middleware
Å Example: There is a need to an application where part of the

code is intended to run on one computer and another part must
run on a different computer.

Å Option ï1: To use sockets to open communication channel
between the two parts of the application

1. Need to worry about the channel itself:

Å Create the channel

Å Deal with any errors or failures

2. Need to devise a protocol so that the two parts of the
application can exchange information in an ordered manner.
The protocol specifies who will be sending what, when and
what is expected response.

15

Need for Middleware

3. Need to work out a format for the information being
exchanged so that it can be correctly interpreted by both
sides.

4. Once all above issues are resolved, we must develop an
application that uses the communication channel:

ï Erroneous messages

ï Failure of application at other side of the channel

ï Recovery procedures to resume operations after failures

Å Most of this work can be avoided by using middleware
abstractions and tools.

Remote Procedure Call - RPC

17

Remote Procedure Call

The remote procedure call interface permits one to write
client-server programs by calling functions on the client that
appear to be functions on the server

ÅDeveloped by Sun Microsystems

ÅProvides a standard, partially automated method for some
distributed computing tasks

Å It is based on extending the notion of conventional, or local
procedure calling, so that the called procedure need not exist
in the same address space as the calling procedure.

ÅThe two processes may be on the same system, or they may
be on different systems with a network connecting them.

ÅBy using RPC, programmers of distributed applications
avoid the details of the interface with the network.

18

Remote Procedure Call

ÅRPC was introduced by Birell and Nelson in 1980

as a way to transparently call procedures on other

machines, used to build 2-tier systems.

ÅRPC introduced the concept of

ïclient,

ïinterface definition language (IDL),

ïname and directory services,

ïdynamic binding,

ïservice interface and so on.

19

Overview of RPCs
Å Implicit network programming (sockets are explicit)

ÅProvides an API that looks like function calls

On the client:

ÅClient stub procedure provides a function-call interface to
applications running on the client

ÅClient stub uses sockets (datagram or stream) to interface
with sockets on a server

On the server:

ÅServer stub procedure interfaces to client stub through
sockets

ÅProvides a procedure-like interface to application layer

RPC package handles:

ÅReliability (retransmission, etc.)

ÅData translation

20

21

22

Types of middleware
RPC based systems

Å Today, RPC systems are used as a foundation for almost all other forms of
middleware, including Web Services middleware, e.g. SOAP provides a way to wrap
RPC calls into XML messages exchanged through HTTP or some other transport
protocol.

TP monitors

Å It can be seen as RPC with transactional capabilities

Object brokers

Å Most of them used RPC as underlying mechanism to implement remote object calls,
e.g.CORBA

Object monitors

Å TP monitors extended with OO interfaces

Message-oriented middleware

Å Asynchronous RPC, TP monitors

Å Queuing systems

Å MOM: provides transactional access to the queues, persistent queues and a number
of primitives for reading and writing to local and remote queues.

Message brokers

Å Application logic can be attached to queues, thereby allowing designers to
implement much more sophisticated interaction in an asynchronous manner.

23

How RPC works

1. To define IDL

ÅIt provides an abstract representation of the

procedure in terms of what parameters it

takes as input and what parameters it returns

as a response.

24

25

How RPC works

2. To compile IDL description

ïClient stubs: every procedure signature in the

IDL file results in a client stub.

ïThe stub is a piece of code to be compiled and

linked with the client.

ïWhen the client calls a remote procedure the

call that is actually executed is a local call to

the procedure provided by the stub.

26

How RPC works

The stub then takes care of:

ÅLocating server, i.e, binding the call to a server,

ÅFormatting the data appropriately, (which involves

marshalling and serializing the data)

ÅCommunicating with the server

ÅGetting a response.

ÅForwarding that response as return parameter of

the procedure invoked by the client

27

How RPC works

ÅMarshaling involves packing data into a common message
format prior to transmitting the message over a
communication channel, so that the message can be
understood by the recipient.
ïAn interprocess communication system may provide the capability

to allow data representation to be imposed on the raw data.

ïBecause different computers may have different internal storage
format for the same data type, an external representation of data
may be necessary.

ïData marshalling is the process of (I) flatterning a data structure,
and (ii) converting the data to an external representation.

ÅSerialization consists of transforming the message into a
string of bytes prior to sending the message through a
communication channel.

28

Data Encoding Protocols

application specific data encoding language

general data encoding language

network data encoding standard

data encoding schemes Sample Standards
level of abstraction

XML:(Extensible Markup Language)

ASN.1(Abstract Syntax Notation)

SunXDR(External Data Representation)

29

Data Marshalling

"This is a test."

"This is a test."

1.2 7.3 -1.5

1.2

7.3

-1.5

110011 ... 10000100 ...

marshalling

unmarshalling

1. flattening of structured data items

2. converting data to external (network)

 representation

1. convert data to internal representation

2. rebuild data structures.

host A

host B

External to internal representation and vice versa

is not required

 - if the two sides are of the same host type;

 - if the two sides negotiates at connection.

30

31

32

How RPC works

Client stubs

ÅThe stub is a placeholder or proxy for the actual
procedure implemented at the server.

ÅThe stub makes the procedure appear as a normal
local procedure, it does not implement the
procedure.

ÅIt implements all the mechanism necessary to
interact with the server remotely for the purposes
of executing that particular procedure.

33

Benefits of RPC

1. The programming is easier since there is little or no
network programming involved. The application
programmer just writes a client program and the server
procedures that the client calls.

2. If an unreliable protocol such as UDP is used, details
like timeout and retransmission are handled by the RPC
package. This simplifies the user application.

3. The RPC library handles any required data translation
for the arguments and return values. For example, if the
arguments consists of integers and floating point
numbers, the RPC package handles any differences in
the way integers and floating point numbers are stored
on the client and server.

34

Sample Application

rpcgen print.x

ïrpcgen uses its own language (RPC language or RPCL)
which looks very similar to preprocessor directives.

ïrpcgen exists as a standalone executable compiler that
reads special files denoted by a .x prefix.

cc client.c print_clnt.c ïo client

cc server.c print_svc.c ïo server

./server&

ÅFrom client PC:
./client hostname

35

rpcgen

The default output of rpcgen is:

ÅA header file of definitions common to the

server and the client

ÅA set of XDR routines that translate each

data type defined in the header file

ÅA stub program for the server

ÅA stub program for the client

36

rpcgen

rpcgen can optionally generate :

ÅVarious transports

ÅA time-out for servers

ÅServer stubs that are MultiThreading safe

ÅServer stubs that are not main programs

ÅC-style arguments passing ANSI C-compliant code

ÅAn RPC dispatch table that checks authorizations
and invokes service routines

37

Converting Local Procedures to

Remote Procedures

/* msg.x: Remote msg printing protocol */

program MESSAGEPROG

{ version PRINTMESSAGEVERS {

int PRINTMESSAGE(string) = 1;

} = 1;

} = 0x20000001;

38

Converting Local Procedures to

Remote Procedures

ÅRemote procedures are always declared as part of
remote programs. The code above declares an
entire remote program that contains the single
procedure PRINTMESSAGE.

In this example, PRINTMESSAGE procedure is
declared to be:

ïthe procedure 1,
in version 1 of the remote program
MESSAGEPROG, with the program number
0x20000001.

39

Converting Local Procedures to

Remote Procedures

ÅVersion numbers are incremented when
functionality is changed in the remote
program.

ÅExisting procedures can be changed or new
ones can be added.

ÅMore than one version of a remote program
can be defined and a version can have more
than one procedure defined.

Remote Method Invocation - RMI

41

Object Serialization

ÅObject Serialization is the technique by which
Object persistence is realized.

ÅIt controls how data that comprises an objectôs
state information: member variables, whether
public, private or protected is written as a
sequence of bytes.

ÅThe serialized object might be sent over a network
(thru RMI), or saved to a disk so that it can be
accessed at some point in the future.

ÅThis allows objects to move from one JVM to
another.

42

Object Serialization

ÅSerialization works by examining the variables of
an object and writing primitive data types like
numbers and characters to a byte stream.

ÅAn Object may contain an object as a member
variable.

ÅThe object member variable would cease to
function correctly if the object was left out, so the
variable must be serialized as well.

ÅThe set of all objects referenced is called a graph
of objects, and object serialization converts entire
graph to byte form.

43

Distributed Objects

ÅIn classic client-server the server program listens
on a fixed port.

ÅThe client program connects to that port, and can
then send messages (strings) to the server
program.

ÅIn distributed objects, the client object will send a
method to the server object.

ÅThe programmer does not deal with opening
sockets and connecting to remote machines.

44

Issues

ÅHow does the client find the server?

ÅNetwork connections must be made but to

where and by who?

ÅHow does the client object interact with the

server object?

ÅHow can we send a method request across

the network?

45

Client-Dispatcher-Server

ÅA software system integrating a client with a set of
distributed servers, with the servers running locally
or distributed over a network

Problem

How to find the servers?

ÅA client should be able to use a service independent
of the location of the service provider (server)

ÅThe code implementing the functional core of a
client should be separate from the code use to
establish a connection with the server

46

Structure

47

Dynamics

48

Platforms available

ÅSunôs implementation of remote procedure

calls (RPC)

ÅJavaôs RMI

ÅOMG CORBA

ÅMicrosoft .NET

ÅSunôs J2EE

49

Proxy

ÅThe agency for a person who acts as a substitute
for another person, authority to act for another.

The Pattern

ÅThe proxy has the same interface as the original
object

ÅUse common interface (or abstract class) for both
the proxy and original object

ÅProxy contains a reference to original object, so
proxy can forward requests to the original object

50

Structure

51

Dynamics

52

Reasons for Object Proxies

Remote Proxy

ÅThe actual object is on a remote machine

(remote address space)

ÅHide real details of accessing the object

ÅUsed in CORBA, Java RMI, RMI-IIOP

53

Reasons for Object Proxies

Virtual Proxy

Å Creates/accesses expensive objects on demand

Å You may wish to delay creating an expensive object until it is really accessed

Å It may be too expensive to keep entire state of the object in memory at one
time

Protection Proxy

Å Provides different objects different level of access to original object

Cache Proxy (Server Proxy)

Å Multiple local clients can share results from expensive operations: remote
accesses or long computations

Firewall Proxy

Å Protect local clients from outside world

Synchronization Proxy

Å Synchronize multiple accesses to real subject

54

Java RMI

ÅFirst program

55

56

Example - 1

Example: HelloServer

Server Side

Step 1:Compile the source code

ÅServer side needs interface Hello and class

HelloServer
[sanjay@dslabsrv17 HelloWorld]$ javac HelloInterface.java

HelloServer.java

[sanjay@dslabsrv17 HelloWorld]$ Javac RegisterIt.java

[sanjay@dslabsrv17 HelloWorld]$

57

Example - 1

Step 2 . Generate Stubs and Skeletons

The rmi compiler generates the stubs and

skeletons
[sanjay@dslabsrv17 HelloWorld]$ rmic - v1.2 - verbose

HelloServer

[loaded ./HelloServer.class in 0 ms]

[loaded

/opt/jdk1.5.0_07/jre/lib/rt.jar(java/rmi/server/UnicastRemo

teObject.class) in 1 ms]

[loaded

/opt/jdk1.5.0_07/jre/lib/rt.jar(java/rmi/server/RemoteServe

r.class) in 1 ms]

58

Example - 1

ÅThis produces the files (as JDKv1.2 is selected):

HelloServer_Stub.class

For Other versions following files will be created:

HelloServer_Skel.class

HelloServer_Stub.class

ÅThe Stub is used by the client and server

The Skel is used by the server

59

Example - 1

Step 3

Run RMI Registry, For the default port number

[sanjay@dslabsrv17 HelloWorld]$

rmiregistry&

For a specific port number

rmiregistry portNumber &
[sanjay@dslabsrv17 HelloWorld]$ rmiregistry 8090&

[1] 23613

60

Example - 1

[sanjay@dslabsrv17 HelloWorld]$ netstat - a | more

Active Internet connections (servers and established)

Proto Recv - Q Send - Q Local Address Foreign Address

State

tcp 0 0 *:32768 *:*

LISTEN

tcp 0 0 localhost.localdo:32769 *:*

LISTEN

tcp 0 0 *:1099 *:*

LISTEN

tcp 0 0 localhost.localdoma:783 *:*

LISTEN

tcp 0 0 *:sunrpc *:*

LISTEN

61

Example - 1

[sanjay@dslabsrv17 HelloWorld]$ netstat - a
Active Internet connections (servers and established)

Proto Recv - Q Send - Q Local Address Foreign Address State

tcp 0 0 *:32768 *:* LISTEN

tcp 0 0 localhost.localdo:32769 *:* LISTEN

tcp 0 0 localhost.localdoma:783 *:* LISTEN

tcp 0 0 *:sunrpc *:* LISTEN

tcp 0 0 *:x11 *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 localhost.localdoma:ipp *:* LISTEN

tcp 0 0 localhost.localdom:smtp *:* LISTEN

tcp 0 0 *:8090 *:* LISTEN

tcp 0 0 *:8443 *:* LISTEN

62

Example - 1

Step 4: Register the server object with the rmiregistry by
running HelloServer.main()

[sanjay@dslabsrv17 HelloWorld]$ java RegisterIt&

[1] 24018

[sanjay@dslabsrv17 HelloWorld]$ Object

instantiatedHelloServer[UnicastServerRef [liveRef:

[endpoint:[10.100.84.17:32778](local),objID:[0]]]]

HelloServer bound in registry

Important the above command will create a new thread that
will not stop until you kill it!

63

Example - 1

Client side

ÅPlace .java.policy in your home directory. This is
needed when running rmi in JDK 1.2, but not
in JDK 1.1.x.

ÅThe client can be executed on the same machine or
a different machine than the server

Step 1 . Compile the source code

ÅClient side needs interface Hello and class
HelloClient

javac HelloInterface.java HelloClient.java

64

Example - 1

ÅStep 2. Make sure that the

HelloServer_Stub.class is available

ÅStep 3. Run the client code
[sanjay@dslabsrv17 HelloWorld]$ java

HelloClient

Hello World, the current system time is

Mon Sep 04 13:38:49 IST 2006

65

Example - 1

Run HelloClient from a Window based

computer:

ÅCopy .java.policy in the home directory of a

user, e.g. C:\Documents and

Settings\200512001

66

Example - 1

C: \ Testing \ HelloWorld>dir

Volume in drive C has no label.

Directory of C: \ Testing \ HelloWorld

09/04/2006 10:28a <DIR> .

09/04/2006 10:28a <DIR> ..

09/04/2006 10:20a 1,078 HelloClient.class

09/04/2006 01:30p 612 HelloClient.java

09/04/2006 10:18a 227 HelloInterface.class

07/29/2000 01:42p 221 HelloInterface.java

09/04/2006 01:00p 1,651 HelloServer_Stub.class

5 File(s) 3,789 bytes

2 Dir(s) 309,920,768 bytes free

C: \ Testing \ HelloWorld>java HelloClient

Hello World, the current system time is Mon Sep 04 13:57:01 IST

C: \ Testing \ HelloWorld>

67

Example - 1

Testing of HelloClient from another linux based computer:
[sanjay@dslab66 HelloWorld]$ ls - la

total 20

drwxr - xr - x 2 sanjay student 4096 Sep 4 10:33 .

drwxr - xr - x 5 sanjay student 4096 Aug 24 2005 ..

- rw - r -- r -- 1 sanjay student 1078 Sep 4 10:20
HelloClient.class

- rw - r -- r -- 1 sanjay student 227 Sep 4 10:18
HelloInterface.class

- rw - r -- r -- 1 sanjay student 1651 Sep 4 2006
HelloServer_Stub.class

[sanjay@dslab66 HelloWorld]$ export
CLASSPATH=$CLASSPATH:/home/sanjay/rmi/HelloWorld/:

[sanjay@dslab66 HelloWorld]$ java HelloClient

Hello World, the current system time is Mon Sep 04 14:07:42 IST 2006

[sanjay@dslab66 HelloWorld]$

68

Example - 2

ÅExample: HelloServerSecured

ÅServer Side

Step 1

Install a policy file for socket permissions

ÅPlace the following in a file called ñ.java.policyò
in your home directory.

ÅThis is needed when running rmi in JDK 1.2,
but not in JDK 1.1.x.

69

Example - 2

grant { permission

java.net.SocketPermission "*:1024 -

65535",

"connect,accept,resolve";

permission java.net.SocketPermission

"*:1 - 1023",

"connect,resolve"; };

70

Example - 2

Step 2:Compile the source code

ÅServer side needs interface Hello and class

HelloServer

javac Hello.java HelloServer.java

71

Example - 2

Step 3 . Generate Stubs and Skeletons
The rmi compiler generates the stubs and
skeletons

rmic HelloServer

ÅThis produces the files:

HelloServer_Skel.class

HelloServer_Stub.class

ÅThe Stub is used by the client and server
The Skel is used by the server

72

Example - 2

Step 4

Run RMI Registry

For the default port number

rmiregistry &

ÅFor a specific port number

rmiregistry portNumber &

73

Example - 2

Step 4: Register the server object with the
rmiregistry by running HelloServer.main()

java HelloServer &

ÅImportant the above command will create
a new thread that will not stop until you kill
it!

74

Example - 2

ÅClient side

ÅThe client can be executed on the same
machine or a different machine than the
server

Step 1 . Compile the source code

ÅClient side needs interface Hello and class
HelloClient

javac Hello.java HelloClient.java

75

Example - 2

ÅStep 2. Make the HelloServer_Stub.class is

available

ÅStep 3. Run the client code

java HelloClient

76

Example-3: Weather Information

[sanjay@dslabsrv17 weather]$ javac Weather.java

[sanjay@dslabsrv17 weather]$ javac

WeatherInterface.java

[sanjay@dslabsrv17 weather]$ javac

WeatherServer.java

[sanjay@dslabsrv17 weather]$ rmic WeatherServer

[sanjay@dslabsrv17 weather]$ java WeatherServer&

[3] 1632

77

C: \ Testing \ Weather>java WeatherClient 10.100.84.17

//10.100.84.17:4711/WeatherServer

List of Commands to get Weather Information :

all - Get all information available

wind - Get the wind speed

temp - Get the temperature

type - Get the weather type (for example "dry or cloudy"

help - View these commands again

quit - Quit the connection and the program.

>> all

Todays weather:

The temperature is 18 degrees Celsius

The wind is blowing with 10 m/s

It is raining...

There are some clouds in the sky.

The air is white and cold. It is a bit foggy.

>> wind

The wind blows with 10 m/s.

>> type

Today we have rain and clouds and fog.

>> temp

Temperature: 18 degrees celsius.

>> quit

Thank you for using Weather Information !

78

[sanjay@dslabsrv17 weather]$ netstat - a | more

Active Internet connections (servers and

established)

Proto Recv - Q Send - Q Local Address

Foreign Address State

tcp 0 0 *:32768 *:*

LISTEN

tcp 0 0 localhost.localdo:32769 *:*

LISTEN

tcp 0 0 *:4711 *:*

LISTEN

79

Basic Issues

Multiple JVMs Running

ÅAfter testing (running and rerunning and

rerunning and ...) your server you may end

up with many JVMs that will not quit once

you log out.

ÅIt is very easy to accumulate lots of used

orphaned processes.

80

Basic Issues

ÅUse the command:

/usr/bin/ps - o pid,stime,comm ïusanjay

ÅWhich will find all my processes

ÅPut the following in a file, make it executable

ÅRunning the file will then kill all your Java

processes

kill ´/usr/bin/ps - o pid,comm - u$USER |

egrep java | awk '{print $1}' ´

81

Basic Issues

Port Contention

ÅOnly one server can use a port at a time!

ÅNot everyone can use the same port number for the
RMI registry.

ÅThe RMI HelloServer example runs the RMI
registry on the default port 1099

ÅYou will need to find a port that is unused for your
server!

ÅPorts you use must be in the range: 5001-65536

Run RMI registry on open Port

Enterprise Application

Development and Deployment

83

Building Distributed Applications

was Difficult

ÅNeed to support:
ïTransactions,

ïresource-pooling,

ïsecurity,

ïthreading,

ïpersistence,

ïlife-cycle, etcé

ÅSystem programming at the expense of business
logic

ÅDevelopers had to become specialists

ÅProprietary APIs resulted in non-portable code

84

Problems in Scaling an

Application Client

Åcommunication overhead

Ådelay in accessing servers

Åissues of priority and fairness

Åsynchronization

Årunning on different platforms

ïbased on USER needs

85

Problems in Scaling an

Application Server

Åneed for independence from client

Åvariety of client demands

Åscalability

Åtransparency to client

Åhardware based on

ïperformance

ïinfrastructure needs

86

Problems in Scaling an

Enterprise System

Åtransaction service (commit/rollback)

Åsecurity

Åload balancing

Åthread management

Åpersistence

Åmiddleware

Åaccounting and logging

Åmigrating from legacy systems

87

Common Object Request Broker

Architecture - CORBA

ÅCORBA was developed by a consortium of companies (the
Object Management Group) during the early 1990s to
provide a common, language- and vendor-neutral standard
for object distribution.

ÅCORBA as an architecture has been well accepted and
successfully used in many projects.

ÅThe CORBA architecture is built around a special layer,
the object request broker (ORB), that facilitates
communication between clients and objects.

ÅThe ORB is responsible for handling the object requests
from a client and passing over the parameters from method
invocations.

88

Common Object Request Broker

Architecture - CORBA

ÅLow-level communication between different
object spaces (ORBs) is done by using the
Internet-Inter ORB Protocol (IIOP).

ÅBy using this standard protocol, a CORBA-based
program from any vendor, on almost any
computer, operating system, programming
language, and network can interoperate with a
CORBA-based program from the same or another
vendor, on any other computer, operating system,
programming language, and network.

89

90

91

CORBA

ÅApart from the ORB, there are two other key building
blocks in the CORBA model, the Interface Definition
Language (IDL), which normalizes the differences caused
by language or operating system dependencies; and the
CORBA services, which provide standard ways for
CORBA objects to interact, such as naming and
transaction.

ÅIt enables interoperability between different vendorsô
products, and that CORBA is language neutral. CORBA
clients and servers can be written in a variety of computer
languages, including Java, C++, C, Smalltalk, and Ada.

ÅThis is possible by implementing remote interfaces for the
CORBA distributed objects in IDL.

92

CORBA

ÅBut when using CORBA to build distributed

systems in Java, the development effort is higher,

because many parts of the system have to be

implemented in two languages: IDL and Java.

ÅThe development tools and runtime environment

for CORBA applications can also be expensive

and may not fully implement the CORBA

services.

93

RMI over IIOP (RMI-IIOP)

ÅRMI over IIOP (RMI-IIOP) combines the best features of
RMI with those of CORBA. Like RMI, RMI-IIOP allows
developers to use only Java.

ÅDevelopers do not have to develop in both Java and IDL.
RMI-IIOP allows developers to build classes that pass any
serializable Java object as remote method argument or
return value.

ÅBy using IIOP as communication protocol, RMI-IIOP
applications are interoperable with other CORBA
applications.

ÅThe synthesis of these two technologies results in a unique
combination of power and ease of use, the Enterprise
JavaBeans.

94

Defining J2EE

ÅThe Java 2 Platform, Enterprise Edition (J2EE)
specification describe a services-based application
architecture within which
ïTransactional (DB updates),

ïScalable (able to handle very large number of
potential & simultaneous users),

ïSecure (users must be authorized),

ïReliable (able to withstand planned and unplanned
component failures)
ïportable Java components can be deployed and

redeployed.

95

Java 2 Platform, Enterprise

Edition (J2EE)
ÅJ2EE defines an ARCHITECTURE for

developing complex, distributed java applications

ÅConsists of:

ïDesign guidelines for developing enterprise
applications using J2EE

ïA reference implementation to provide an operational
view of J2EE

ïA compatibility test suite for compliance testing of
third party products

ïSeveral APIs (Application Programming Interfaces)

ïTechnologies to simplify enterprise Java Development

96

J2EE Application Server
ÅThe Application server handles all system level

programming

ïSecurity

ÅAuthorization

ÅAuthentication

ïTransactions

ïThreading

ïObject life time management

ïCaching

ïObject persistence

ïDatabase Connection pooling

97

A Typical J2EE Server

Security

Development
and

Deployment
Operations,

Administration
and

Management

Application
Server

Integration

Portal

98

Several Clients one System

99

J2SEĄJ2EE

J2SE and J2EE

Basic libraries for java

development

I/o

GUIs

applets

etc

Based on J2SE

Can UTILIZE EJB

Uses other technologies

Defines a Specification

Components are constrained

to abide by interface

specsif they abide J2EE

100

Changes in J2EE 1.3 Specification

ÅNew Container managed Persistence Model

ÅSupport for Message Driven Beans

ÅSupport for Enterprise Local Beans

ÅFinally, J2EE1.3 requires Support for

J2SE1.3

101

Changes in J2EE 1.4 Specification

ÅSupport for Web Services

ÅJAX-RPC and SAAJ APIs provide the basic

web services interoperability support

ÅJAXR API supportaccess to registries and

repositories

ÅJMX API supports J2EE Management API

102

Benefits of the J2EE Approach

Allows developers to develop systems without
regard of

ïthe operating system or hardware technology
platforms (platform independence)

ïThe application server software that will be
used to implement (execute) the business
system (application independence)

ïThe physical locations from which the business
system will be accessed (location
transparency)

103

Benefits of the J2EE Approach

ÅAllows developers to specify the resources a
business system will employ and set specific
levels for these resources without having to write
elaborate lines of code to achieve this (attribute
based programming):

ïExample: developers can specify:

ÅSecurity levels for different users of the system

ÅHow business system will connect to database and access data,
access remotely located objects, manage transactions,
intercommunicate with other component, etc

ÅAllows for Higher productivity of systems
development team (cost-effective, rapid, re-use of
pre-built components

104

Benefits of the J2EE Approach

ÅFacilitates componentization in many ways:

ïJ2EE offers a well thought-out approach of separating

the development aspects of a component from its

assembly specifics

ïJ2EE offers a wide range of APIs that can be used for

accessing and integrating products from third-party

vendors, creating a market for software components

ïJ2EE offers function-specific or highly specialized

components optimized for specific types of roles

105

J2EE Communication as Tiers

106

The Container Concept

ïA Container is a software entity that runs

within the server and is responsible for

providing the execution environment for J2EE

components

ïA Container also manage the life-cycle of

components deployed within it.

ïThe container is responsible for resource-

pooling, enforcing security, and enforcing

transaction management requirements

107

J2EE Containers

ÅBefore a component can be executed, it must be
assembled into a J2EE application and deployed
into its container

108

EJB Container

ÅA container is provided by the Application Server

vendor to provide basic services that are required

by J2EE specification.

ÅAn EJB programmer places their code here, and is

assured a variety of basic services are available

ÅEJBs are fundamental links between presentation

components (web tier) and business critical data

and systems (EIS tier).

109

EJB Container

110

EJB Client

ÅFrom the EJB client perspective, all interactions

are performed on objects that implement the home

and component interfaces.

111

Client invocation to Remote Interfaces

112

Client invocation to Local Interfaces

113

Business Tier in EJB Container

114

Basic Services Provided by the

EJB Container
ÅNaming

ÅTransaction management

ÅSecurity

ÅPersistence

ÅConcurrency

ÅLife cycle management

ÅMessaging

ÅRemote client connectivity

ÅDatabase connection pooling

115

Web Container

ÅServices supported by the web container

ïHTTP

ïJSP

ïServlets

116

Web tier in web container

Web Tier components runs on EJB

Server under Web Container. Web

Container provides web components

naming context & Life-cycle management.

