DA-IICT

Fundamentals of
Distributed Computing

Sanjay Chaudhary
DA-IICT

A\

DA-IICT

Definition

Distributed System

A A distributed system is a collection of independent
computational resources and are connected with each other
with the help of networks, and it is capable of resolving a
task in a collaborative manner.

Distributed Computing

A Distributed computing deals with computational tasks to be
performed on distributed system(s). Distributed computing
uses multiple independent heterogeneous computational
resources, which are communicating with each other over a
network to perform a task. A distributed computational task
IS likely to involve heterogeneous resources like computer
hardware, programming languages, operating systems and
other resources.

DA-TICT

Distributed Systems

or ‘
stations g\ > a local network

o=

|:| a network host

A-IICT

Computers in a Distributed Syster

A Workstations: computers used by arsers to
perform computing

A Server machines: computers which provide
resources and services

A Personal Assistance Devices: handheld
computers connected to the system via a
wireless communication link.

Examples of Distributed System:
A Network of workstations, Internet, Intranet

4

DA-TICT

Centralized vs. Distributed Computing

terminal . P
mainframe computer, :
workstation \

\
L N\

LT /
W

network host /
centralized computing

distributed computing

LN\

5

A\

Monolithic mainframe applications vs. DA-TICT
distributed applications

based onhttp://www.inprise.com/visibroker/papers/distributed/wp.html

A The monolithic mainframe application architecture

I Separate, singlunction applications, such as oremrtry or
billing
I Applications cannot share data or other resources

I Developers must create multiple instances of the same
functionality (service).

I Proprietary (user) interfaces

A The distributed application architecture:

i Integrated applications

i Applications can share resources

I A single instance of functionality (service) can be reused.
|

- Common user interfaces

A\

DA-IICT

Evolution of paradigms

A Clientserver: Socket API, remote method invocation
A Distributed objects

A Obiject broker: CORBA

A Network service: Jini

A Obiject space: JavaSpaces

A Mobile agents

A Message oriented middleware (MOM): Java Message
Service

A Collaborative applications

DA-IICT

Why distributed computing?

A Economics: distributed systems allow the
pooling of resources, including CPU cycles,
data storage, input/output devices, and
services.

A Reliability: a distributed system allow
replication of resources and/or services,
thus reducing service outage due to failures.

A The Internet has become a universal
platform for distributed computing.

The Weaknesses and Strength!%l
Distributed Computing

In any form of computing, there is always a
tradeoff in advantages and disadvantages

Some of the reasons for the popularity of
distributed computing :

A The affordability of computers and
availability of network access

A Resource sharing

A Scalability
A Fault Tolerance

The Weaknesses and Strengths éf‘\
Distributed Computing

The disadvantages of distributed computing:

A Multiple Points of Failures: the failure of
one or more participating computers, or one
or more network links, can spell trouble.

A Security Concerns In a distributed system,
there are more opportunities for
unauthorized attack.

10

(- client B

N-tier architecture

[Web hrnwser]

presentation

L, J
layer
- R
HTML filter
. i,

application logic
layer middleware

i

resource management
layer /

:
1
7
prm,
:
(=]
£

e e R e R

e mm mm w Ew e e e S

N-tier architecture by adding web server

11

DA-IICT

internal | e | "
clients i Web
server
cluster

I LAN |

middl‘awarg‘i/nm !

= application | LAN
e logic ateways

resource |
i
management : o
H I

layer i —
: datab
i server

g

ase

r.“—"““-u"““—“hl R REEmi b e e N.;'\"'\.
i middleware i L Wroppers } %
i application @ and i
H = logle § eways i
i) H i

| ! additional resource i f

L management layers "

application
server

N-tier Systems

12

A\

DA-IICT

Middleware

A Middleware facilitates and manages the interaction
between applications across heterogeneous computing
platforms.

A It is architectural solution to the problem of integrating a
collection of servers and applications under a common
service interface.

A Middleware offers programming abstraction that hide
some of the complexities of building a distributed
application.

A Through these programming abstractions, the developer
has access to functionality that otherwise would have to be
Implemented from scratch.

13

A\

DA-IICT

Need for Middleware

A Example: There is a need to an application where part of the
code is intended to run on one computer and another part mi
run on a different computer.

A Optioni 1: To use sockets to open communication channel
between the two parts of the application

1. Need to worry about the channel itself:

A Create the channel
A Deal with any errors or failures

2. Need to devise a protocol so that the two parts of the
application can exchange information in an ordered manner.
The protocol specifies who will be sending what, when and
what is expected response.

14

A\

DA-IICT

Need for Middleware

3. Need to work out a format for the information being
exchanged so that it can be correctly interpreted by both

sides.
4. Once all above issues are resolved, we must develop an
application that uses the communication channel:
I Erroneous messages
I Failure of application at other side of the channel
I Recovery procedures to resume operations after failures
A Most of this work can be avoided by using middleware
abstractions and tools.

15

DA-TICT

Remote Procedure CalRPC

DA-IICT

Remote Procedure Call

Theremote procedure callinterface permits one to write
client-server programs by calling functions on the client that
appear to be functions on the server

A Developed by Sun Microsystems

A Provides a standard, partially automated method for some
distributed computing tasks

A Itis based on extending the notion of conventional, or local
procedure calling, so that the called procedure need not exis
In the same address space as the calling procedure.

A The two processes may be on the same system, or they may
be on different systems with a network connecting them.

A By using RPC, programmers of distributed applications
avoid the details of the interface with the network.

17

DA-IICT

Remote Procedure Call

A RPC was introduced by Birell and Nelson in 1980
as a way to transparently call procedures on other
machines, used to buildtizr systems.

A RPC introduced the concept of

client,

|
I Interface definition language (IDL),
:
|
|

name and directory services,

I dynamic binding,
T service interface and so on.

18

A\

Overview of RPCs

A Implicit network programming (sockets are explicit)
A Provides an API that looks like function calls
On the client:

A Client stub procedure provides a functicall interface to
applications running on the client

A Client stub uses sockets (datagram or stream) to interface
with sockets on a server

On the server:

A Server stub procedure interfaces to client stub through
sockets

A Provides a proceduilike interface to application layer
RPC package handles:

A Reliability (retransmission, etc.)

A Data translation

19

client
PIOSTatL

¥

MACHINE B

callrpe)
function

MACHINE &
(“LIENT)

pmg_mm
contirmes

return
eply

e ERWVEERD)
-
BXE 11t
Teque st call
FeIriCe
2eIrice
exeC1te s
—_——
Teue st
completes

20

y/
/ /.
£
/ 4

DA-IICT

Remote Procedure Call
P

L ¥ 4

sockets
N

v

S
TCP, UDP

£

N
Internet Protocol (IP)

V/\\

DA-IICT

Remote Procedure Call:

hides communication details behind
a procedure call and helps bridge
heterogeneous platforms

sockets:

operating system level interface to the
underlying communication protocols

TCP, UDP:

User Datagram Protocol (UDP) transports
data packets without guarantees
Transmission Control Protocol (TCP)
verifies correct delivery of data streams

Internet Protocol (IP):
moves a packet of data from one node
to another

21

Types of middleware

RPC based systems

A Today, RPC systems are used as a foundation for almost all other forms of
middleware, including Web Services middleware, e.g. SOAP provides a way to wrap
RPC calls into XML messages exchanged through HTTP or some other transport

protocol.

TP monitors

A It can be seen as RPC with transactional capabilities

Object brokers

A Most of them used RPC as underlying mechanism to implement remote object calls,
e.g.CORBA

Object monitors

A TP monitors extended with OO interfaces

Messageoriented middleware

A Asynchronous RPC, TP monitors

A Queuing systems

A MOM: provides transactional access to the queues, persistent queues and a number
of primitives for reading and writing to local and remote queues.

Message brokers

A Application logic can be attached to queues, thereby allowing designers to
implement much more sophisticated interaction in an asynchronous manner.

22

DA-IICT

How RPC works

1. To define IDL

A It provides an abstract representation of the
procedure in terms of what parameters it
takes as input and what parameters it return:
as a response.

23

client processl

client
code by

language specific
call interface

[client sfubJL

"1

development
environment

IDL i

IDL compiler | e -----

interface
headers

DA-IICT

server process

. > server
§ code

language specific
call interface

.{ server sfubJ

~f;
;u-uuuu--uuu

24

DA-IICT

How RPC works

2. To compile IDL description

| Client stubs: every procedure signature in the
IDL file results in a client stub.

I The stub is a piece of code to be compiled and
linked with the client.

I When the client calls a remote procedure the
call that is actually executed is a local call to
the procedure provided by the stub.

25

A\

DA-IICT

How RPC works

The stub then takes care of:
A Locating server, i.e, binding the call to a server,

A Formatting the data appropriately, (which involves
marshalling and serializing the data)

A Communicating with the server
A Getting a response.

A Forwarding that response as return parameter of
the procedure invoked by the client

26

A\

DA-IICT

How RPC works

A Marshaling involves packing data into a common message
format prior to transmitting the message over a
communication channel, so that the message can be
understood by the reC|p|ent

I An interprocess communication system may provide the capability
to allow data representation to be imposed on the raw data.

I Because different computers may have different internal storage

format for the same data type, an external representation of data
may be necessary.

I Data marshalling is the process of (I) flatterning a data structure,
and (i) converting the data to an external representation.

A Serialization consists of transforming the message into a

string of bytes prior to sending the message through a
communication channel.

27

level of abstraction

Data Encoding Protocols

data encoding schemes

application specific data encoding language

general data encoding language

network data encoding standard

Sample Standards

XML :(Extensible Markup Language)

ASN.1(Abstract Syntax Notation)

SunXDR(External Data Representation)

28

Data Marshalling

"This is a test."

1.2 7.3 |-1.5

1. flattening of structured data items
2. converting data to external (network)
representation

host A marshalling

110011 ... 10000100 ...

1. convert data to internal representatior

unmarshalling 2. rebuild data structures.

"This is a test.”

-1.5 External to internal representation and vice versg
is not required

7.3 - if the two sides are of the same host type;

1.2 - if the two sides negotiates at connection.

host B

29

V/\\

DA-IICT
client server
client process server process
procedure call procedure «—
dispatcher
/ client stub) /" server stub) (select
bind stuP)
marshal unmarshal
serialize communication deserialize communication
send > module receive < module
_ _) =

30

DA-IICT

client server
client process server process
procedure call procedure <—
dispatcher
(tc)l_iec;ﬂ' stub ™ (" server stub (::Li?
: 0. register .
marshal
iali unmarshal
serialize b el T
2. find communication deserialize communication
5. send A module 7. receive« module
e : . :
3. query for server & TAVOKE Srocedie 1 ist
implementing . invoke procedur . regis ec;'
the procedure SEReEr-
4. address of server procedure

name and directory service (binder)

31

A\

DA-IICT

How RPC works

Client stubs

A The stub is a placeholder or proxy for the actual
procedure implemented at the server.

A The stub makes the procedure appear as a normal
ocal procedure, it does not implement the
orocedure.

A It implements all the mechanism necessary to
Interact with the server remotely for the purposes
of executing that particular procedure.

32

A\

DA-IICT

Benefits of RPC

The programming is easier since there is little or no
network programming involved. The application
programmer just writes a client program and the server
procedures that the client calls.

If an unreliable protocol such as UDP is used, detalls
like timeout and retransmission are handled by the RPC
package. This simplifies the user application.

The RPC library handles any required data translation
for the arguments and return values. For example, if the
arguments consists of integers and floating point
numbers, the RPC package handles any differences in
the way integers and floating point numbers are stored
on the client and server.

33

A\

DA-IICT

Sample Application

rpcgen print.x
I rpcgen uses its own language (RPC language or RPCL)
which looks very similar to preprocessor directives.

I rpcgen exists as a standalone executable compiler that
reads special files denoted by a .x prefix.

cc client.c print_cint.c I o client
CC server.c print_svc.c I O server
Jserver&

A From client PC:
Jclient hosthame

34

DA-IICT

rpcgen

The default output of rpcgen iIs:

A A header file of definitions common to the
server and the client

A A set of XDR routines that translate each
data type defined in the header file

A A stub program for the server
A A stub program for the client

35

A\

DA-IICT

rpcgen

rpcgen can optionally generate

A Various transports

A A time-out for servers

A Server stubs that are MultiThreading safe

A Server stubs that are not main programs

A C-style arguments passing ANSi@@mpliant code

A An RPC dispatch table that checks authorizations
and invokes service routines

36

DA-TICT

Converting Local Procedures to
Remote Procedures

[* msg.x: Remote msg printing protocol */
program MESSAGEPROG

{ version PRINTMESSAGEVERS {
int PRINTMESSAGE(string) = 1;
p=1
} = 0x20000001;

37

A\

DA-IICT

Converting Local Procedures to
Remote Procedures

A Remote procedures are always declared as part of
remote programs. The code above declares an
entire remote program that contains the single
procedure PRINTMESSAGE.

In this example, PRINTMESSAGE procedure is
declared to be:

I the procedure 1,
In version 1 of the remote program
MESSAGEPROG, with the program number
0x20000001.

38

DA-IICT

Converting Local Procedures to
Remote Procedures

A Version numbers are incremented when
functionality is changed in the remote
program.

A Existing procedures can be changed or new
ones can be added.

A More than one version of a remote program
can be defined and a version can have more
than one procedure defined.

39

DA-TICT

Remote Method InvocationRMI

DA-IICT

Object Serialization

A Obiject Serialization is the technique by which
Object persistence is realized.

Al't controls how data th
state information: member variables, whether
public, private or protected is written as a
sequence of bytes.

A The serialized object might be sent over a network
(thru RMI), or saved to a disk so that it can be
accessed at some point in the future.

A This allows objects to move from one JVM to
another.

41

DA-IICT

Object Serialization

A Serialization works by examining the variables of
an object and writing primitive data types like
numbers and characters to a byte stream.

A An Object may contain an object as a member
variable.

A The object member variable would cease to
function correctly if the object was left out, so the
variable must be serialized as well.

A The set of all objects referenced is called a graph
of objects, and object serialization converts entire
graph to byte form.

42

DA-IICT

Distributed Objects

A In classic clienserver the server program listens
on a fixed port.

A The client program connects to that port, and can
then send messages (strings) to the server
program.

A In distributed objects, the client object will send a
method to the server object.

A The programmer does not deal with opening
sockets and connecting to remote machines.

43

DA-IICT

Issues

A How does the client find the server?

A Network connections must be made but to
where and by who?

A How does the client object interact with the
server object?

A How can we send a method request across
the network?

44

DA-IICT

Client-DispatchetServer

A A software system integrating a client with a set of
distributed servers, with the servers running locally

or distributed over a network

Problem
How to find the servers?

A A client should be able to use a service independent
of the location of the service provider (server)

A The code implementing the functional core of a
client should be separate from the code use to
establish a connection with the server

45

Structure DA-TICT

¢
Client requests - refurms Servel
senioe s result :
doTask() — — i - w-| SCCEpIONNSCoN)
sendRequest)) p . FUNSEIos)
P " receiveRequest)
requests 4 " i
connection . registers
; .
! Dispatcher ™. |Bccepts
4 _ o[link
S | lOCANICAMAR "
poesinle reqistiersener) i ., _
Ercjr;edss ’ unregisterServer) ectabliches PEEsIblE
olndaty locateServer) connection PrEvEss
; establishChannel) boundary
getChannel])

46

Dynamics

Client | Dispatcher : Server
: registerSanver()
g -
dﬂim.. getiehannel) P%ﬂteﬁewe)
| |
| - o
| Iﬂstabnshlchannem
| i ' -
acospt
. ! Channel -r__l DiDr‘lr'EG'[iCJr‘l[
| |
gl Sendlﬂequeat[j reeive P}equeat[.2.. runService()
l el
-~ | |
- o
1 Ipossible possible,
Nelgele=iots [rress

a7

A\

DA-IICT

Platforms available

ASuno6s i mplementation
calls (RPC)

AlJavabds RMI

A OMG CORBA

A Microsoft .NET
ASunods J2EE

48

A\

DA-IICT

Proxy

A The agency for a person who acts as a substitute
for another person, authority to act for another

The Pattern

A The proxy has the same interface as the original
object

A Use common interface (or abstract class) for both
the proxy and original object

A Proxy contains a reference to original object, so
proxy can forward requests to the original object

49

Client

task()

i

AbstractSubject

sendas i)
SENFOSE]

2

realSubject—::-serwicemﬁ

RealSubject Proxy

seryice() zeryice1()o

services() service2()
Structure

50

A\

DA-IICT

Client

doTask()

Dynamics

service()

Proxy

RealSubject

Ere-pm-:easing[j

| seryice()
i -
[E postprocessingl)

51

A\

DA-IICT

DA-IICT

Reasons for Object Proxies

Remote Proxy

A The actual object is on a remote machine
(remote address space)

A Hide real details of accessing the object
A Used in CORBA, Java RMI, RMIOP

52

Reasons for Object Proxies

Virtual Proxy

A Creates/accesses expensive objects on demand

A You may wish to delay creating an expensive object until it is really accessed

A It may be too expensive to keep entire state of the object in memory at one
time

Protection Proxy

A Provides different objects different level of access to original object

Cache Proxy (Server Proxy)

A Multiple local clients can share results from expensive operations: remote
accesses or long computations

Firewall Proxy

A Protect local clients from outside world
Synchronization Proxy

A Synchronize multiple accesses to real subject

53

DA-TICT

Java RMI

A First program

54

rMachine A

HelloClient

=ayHello
-(
sl

Hello “

otub

il

Machine B
HelloServer
mayHello SELFHE -
-
Hello
I—Iellcu
Sskeleton

55

DA-IICT

Example- 1

Example: HelloServer
Server Side
Step 1:Compile the source code

A Server side needs interface Hello and class
HelloServer

[sanjay@dslabsrvl7 HelloWorld]$ javac Hellolnterface.java
HelloServer.java

[sanjay@dslabsrvl7 HelloWorld]$ Javac Registerlt.java
[sanjay@dslabsrvl7 HelloWorld]$

56

D

A-TICT

A\

DA-IICT

Example- 1

Step 2. Generate Stubs and Skeletons
The rmi compiler generates the stubs and

skeletons

[sanjay@dslabsrv17 HelloWorld]$ rmic -vl.2 -verbose
HelloServer

[loaded ./HelloServer.class in 0 ms]

[loaded
[opt/jdk1.5.0_07/jre/lib/rt.jar(java/rmi/server/UnicastRemo
teObject.class) in 1 ms]

[loaded

/opt/jJdk1.5.0_07/jre/lib/rt.jar(java/rmi/server/RemoteServe
r.class) in 1 ms]

57

A\

DA-IICT

Example- 1

A This produces the files (as JDKv1.2 is selected):
HelloServer_ Stub.class

For Other versions following files will be created:
HelloServer_ Skel.class

HelloServer_ Stub.class

A The Stub is used by the client and server
The Skel is used by the server

58

A\

DA-IICT

Example- 1

Step 3
Run RMI Registry, For the default port number

[sanjay@dslabsrv17 HelloWorld]$
rmiregistry&

For a specific port number

rmiregistry portNumber &

[sanjay@dslabsrv17 HelloWorld]$ rmiregistry 8090&
[1] 23613

59

Example- 1

[sanjay@dslabsrvl7 HelloWorld]$ netstat

Active Internet connections (servers and established)

Proto Recv - Q Send- Q Local Address Foreign Address
State

tcp 0O 0*32768 *ox
LISTEN

tcp O O localhost.localdo:32769 *:*
LISTEN

tcp 0O 07*1099 x
LISTEN

tcp O O localhost.localdoma:783 *:*
LISTEN

tcp O O *sunrpc *x
LISTEN

-a | more

60

D

A-TICT

Example- 1

[sanjay@dslabsrv17 HelloWorld]$ netstat -a

Active Internet connections (servers and established)

Proto Recv

tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp

eololololoelololelele)

- Q Send - Q Local Address

0 *:32768 *ok

O localhost.localdo:32769 *:*
O localhost.localdoma: 783 *:*

0 *:sunrpc *ox
0 *:x11 *ok
0 *:ssh *ox

0 localhost.localdoma:ipp *:*
0 localhost.localdom:smtp *:*
0 *:8090 o
0 *:8443 o

Foreign Address State
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN

61

D

A-TICT

DA-IICT

Example- 1

Step 4:Register the server object with the rmiregistry by
running HelloServer.main()

[sanjay@dslabsrvl7 HelloWorld]$ java Registerlt&
[1] 24018

[sanjay@dslabsrvl7 HelloWorld]$ Object
iInstantiatedHelloServer[UnicastServerRef [liveRef:
[endpoint:[10.100.84.17:32778](local),objID:[0]]]]

HelloServer bound in registry

Important the above command will create a new thread that
will not stop until you kill it!

62

DA-TICT

Example- 1

Client side

A Place .java.policy in your home directomhis is
needed when running rmi in JDK 1.2, but not
in JDK 1.1.x.

A The client can be executed on the same machine o
a different machine than the server

Step 1. Compile the source code

A Client side needs interface Hello and class
HelloClient

javac HelloInterface.java HelloClient.java

63

A\

DA-IICT

Example- 1

A Step 2.Make sure that the
HelloServer Stub.class is available

A Step 3.Run the client code

[sanjay@dslabsrv17 HelloWorld]$ java
HelloClient

Hello World, the current system time is
Mon Sep 04 13:38:49 IST 2006

64

A\

DA-IICT

Example- 1

Run HelloClient from a Window based
computer:

A Copy .java.policy in the home directory of a
user, e.g. GDocuments and
Setting$200512001

65

Example- 1

C:\ Testing \ HelloWorld>dir
Volume in drive C has no label.
Directory of C: \ Testing \ HelloWorld

09/04/2006 10:28a <DIR>
09/04/2006 10:28a <DIR> .
09/04/2006 10:20a 1,078 HelloClient.class

09/04/2006 01:30p 612 HelloClient.java

09/04/2006 10:18a 227 Hellolnterface.class

07/29/2000 01:42p 221 Hellolnterface.java

09/04/2006 01:00p 1,651 HelloServer_Stub.class
5 File(s) 3,789 bytes

2 Dir(s) 309,920,768 bytes free

C:\ Testing \ HelloWorld>java HelloClient
Hello World, the current system time is Mon Sep 04 13:57:01 IST

C:\ Testing \ HelloWorld>

66

Example- 1

Testing of HelloClient from another linux based computer:
[sanjay@dslab66 HelloWorld]$ Is - la

total 20

drwxr -xr -x 2 sanjay student 4096 Sep 4 10:33.

drwxr -xr -x 5sanjay student 4096 Aug 24 2005 ..

-IW-1-- I -- 1 sanjay student 1078 Sep 4 10:20
HelloClient.class

-fW-1-- T -- 1 sanjay student 227 Sep 410:18
Hellolnterface.class

-IW-1-- T -- 1 sanjay student 1651 Sep 4 2006

HelloServer_Stub.class

[sanjay@dslab66 HelloWorld]$ export
CLASSPATH=$CLASSPATH:/home/sanjay/rmi/HelloWorld/:

[sanjay@dslab66 HelloWorld]$ java HelloClient
Hello World, the current system time is Mon Sep 04 14:07:42 IST 2006
[sanjay@dslab66 HelloWorld]$

67

DA-IICT

Example- 2

A Example: HelloServerSecured

A Server Side

Step 1

Install a policy file for socket permissions

APl ace the following in

In your home directory.

A This is needed when running rmi in JDK 1.2,
but not in JDK 1.1.x.

68

DA-TICT

Example- 2
grant { permission
java.net.SocketPermission "*:1024 -

65535",

"connect,accept,resolve”;

permission java.net.SocketPermission
"*:1 -1023",

"connect,resolve"; },

69

A\

DA-IICT

Example- 2

Step 2:Compile the source code

A Server side needs interface Hello and class
HelloServer

javac Hello.java HelloServer.java

70

A\

DA-IICT

Example- 2

Step 3. Generate Stubs and Skeletons
The rmi compiler generates the stubs and
skeletons

rmic HelloServer

A This produces the files:
HelloServer_ Skel.class
HelloServer Stub.class

A The Stub is used by the client and server
The Skel is used by the server

71

Example- 2

Step 4
Run RMI Registry
For the default port number

rmireqgistry &
A For a specific port number
rmiregistry portNumber &

72

A\

DA-IICT

DA-IICT

Example- 2

Step 4:Register the server object with the
rmiregistry by running HelloServer.main()

java HelloServer &

A Important the above command will create
a new thread that will not stop until you Kkill
It!

73

DA-IICT

Example- 2

A Client side

A The client can be executed on the same
machine or a different machine than the
server

Step 1. Compile the source code

A Client side needs interface Hello and class
HelloClient

javac Hello.java HelloClient.java

74

A\

DA-IICT

Example- 2

A Step 2.Make the HelloServer_Stub.class is
available

A Step 3.Run the client code
java HelloClient

75

A\

DA-IICT

Example3: Weather Information

[sanjay@dslabsrvl7 weather]$ javac Weather.java

[sanjay@dslabsrvl17 weather]$ javac
Weatherlnterface.java

[sanjay@dslabsrvl7 weather]$ javac
WeatherServer.java

[sanjay@dslabsrvl7 weather]$ rmic WeatherServer
'sanjay@dslabsrvl7 weather]$ java WeatherServer&
3] 1632

76

C:\ Testing \ Weather>java WeatherClient 10.100.84.17
//10.100.84.17:4711/WeatherServer

List of Commands to get Weather Information :

all - Getall information available

wind - Getthe wind speed

temp - Getthe temperature

type - Getthe weather type (for example "dry or cloudy

help - View these commands again
quit - Quit the connection and the program.
>> all

The temperature is 18 degrees Celsius
The wind is blowing with 10 m/s

Itis raining...

There are some clouds in the sky.

The air is white and cold. It is a bit foggy.

>> wind
The wind blows with 10 m/s.

>>type

Today we have rain and clouds and fog.
>> temp

Temperature: 18 degrees celsius.

>> quit

Thank you for using Weather Information !

77

D

A-TICT

[sanjay@dslabsrvl7 weather]$ netstat

Active Internet connections (servers and
established)

Proto Recv - Q Send- Q Local Address
Foreign Address State

tcp 0O 0*32768 X
LISTEN

tcp O O localhost.localdo:32769 **
LISTEN

tcp 0 0%*4711 o
LISTEN

-a | more

78

D

A-TICT

DA-IICT

Basic Issues

Multiple JVMs Running

A After testing (running and rerunning and
rerunning and ...) your server you may end
up with many JVMs that will not quit once
you log out.

A It is very easy to accumulate lots of used
orphaned processes

79

A\

DA-IICT

Basic Issues

A Use the command:
fusr/bin/ps - 0 pid,stime,comm | usanjay
A Which will find all my processes

A
A

Kill

Put the following in a file, make it executable

Running the file will then kill all your Java
Drocesses

egrep java | awk {print $1}

“fusr/bin/ps - 0 pid,comm - u$SUSER |

I 4

80

DA-IICT

Basic Issues

Port Contention

A Only one server can use a port at a time!

A Not everyone can use the same port number for the
RMI reqistry.

A The RMI HelloServer example runs the RMI
registry on the default port 1099

A You will need to find a port that is unused for your
server!

A Ports you use must be in the range: 566%36
Run RMI registry on open Port

81

DA-IICT

Enterprise Application
Development and Deployment

DA-IICT

Building Distributed Applications
was Difficult

A Need to support:

I Transactions,

I resourcepooling,

I security,

I threading,

| persistence,

i lifeecycl e, etce

A System programming at the expense of business

A
A

ogic
Developers had to become specialists

Proprietary APIs resulted in neportable code

83

Problems in Scaling an
Application Client

A communication overhead

A delay in accessing servers
Aissues of priority and fairness
A synchronization

A running on different platforms
I based on USER needs

84

DA-IICT

DA-IICT

Problems in Scaling an
Application Server

A need for independence from client
A variety of client demands

A scalability

A transparency to client

A hardware based on
| performance
I Infrastructure needs

85

DA-IICT

Problems in Scaling an
Enterprise System

A transaction service (commit/rollback)
A security

A load balancing

A thread management

A persistence

A middleware

A accounting and logging

A migrating from legacy systems

86

A\

DA-IICT

Common Object Request Broker
Architecture - CORBA

A CORBA was developed by a consortium of companies (the
Object Management Group) during the early 1990s to
provide a common, languagend vendoneutral standard
for object distribution.

A CORBA as an architecture has been well accepted and
successfully used in many projects.

A The CORBA architecture is built around a special layer,
the object request broker (ORB), that facilitates
communication between clients and objects.

A The ORB is responsible for handling the object requests
from a client and passing over the parameters from method
Invocations.

87

DA-IICT

Common Object Request Broker
Architecture - CORBA

A Low-level communication between different
object spaces (ORBSs) is done by using the
Internetinter ORB Protocol (IIOP).

A By using this standard protocol, a CORBAsed
program from any vendor, on almost any
computer, operating system, programming
language, and network can interoperate with a
CORBA-based program from the same or another
vendor, on any other computer, operating system,
programming language, and network.

88

. Uhgect
et Implementation
1, - R LN -
IOL ILL
Stk akelpton
s Feguest =
Ut ect Eecouest Broker

Fizare 1: 4 mquest passing from chent to
chiject mplementaton

Copmiph D 0 Dby M ooope oo Thoup

89

DA-IICT

Protocol

Figure 2. Interoperability uses ORE -to-OER communication

Copynzlt @ 2000 Ohject Manazemernt Groap

90

A\

DA-IICT

CORBA

A Apart from the ORB, there are two other key building
blocks in the CORBA model, the Interface Definition
Language (IDL), which normalizes the differences caused
by language or operating system dependencies; and the
CORBA services, which provide standard ways for
CORBA objects to interact, such as naming and
transaction.

Alt enables interoperabilit)
products, and that CORBA is language neutral. CORBA
clients and servers can be written in a variety of computer
languages, including Java, C++, C, Smalltalk, and Ada.

A This is possible by implementing remote interfaces for the
CORBA distributed objects in IDL.

91

A\

DA-IICT

CORBA

A But when using CORBA to build distributed
systems in Java, the development effort is higher,
because many parts of the system have to be
Implemented in two languages: IDL and Java.

A The development tools and runtime environment
for CORBA applications can also be expensive
and may not fully implement the CORBA
services.

92

DA-IICT

RMI over IIOP (RMHIOP)

A RMI over IIOP (RMHIOP) combines the best features of
RMI with those of CORBA. Like RMI, RMIIOP allows
developers to use only Java.

A Developers do not have to develop in both Java and IDL.
RMI-IIOP allows developers to build classes that pass any
serializable Java object as remote method argument or
return value.

A By using IIOP as communication protocol, RMDP
applications are interoperable with other CORBA
applications.

A The synthesis of these two technologies results in a unique
combination of power and ease of use, the Enterprise
JavaBeans.

93

A\

DA-IICT

Defining J2EE

A The Java 2 Platform, Enterprise Edition (J2EE)
specification describe a servieleased application
architecture within which

i Transactiona{DB updates)

i Scalablgable to handle very large number of
potential & simultaneous useys)

i Securdusers must be authorized)

I Reliable (able to withstand planned and unplanned
component failures)

I portable Java components can be deployed and
redeployed.

94

DA-IICT

Java 2 Platform, Enterprise
Edition (J2EE)

A J2EE defines an ARCHITECTURE for
developing complex, distributed java applications

A Consists of:

I Design guidelines for developing enterprise
applications using J2EE

I A reference implementation to provide an operational
view of J2EE

I A compatibility test suite for compliance testing of
third party products

I Several APIs (Application Programming Interfaces)
I Technologies to simplify enterprise Java Development

95

A\

DA-IICT

J2EE Application Server

A The Application server handles all system level
programming
I Security
A Authorization
A Authentication
I Transactions
I Threading
I Object life time management
I Caching
I Object persistence
I Database Connection pooling

96

V/\\

DA-IICT

A Typical J2EE Server

97

V/\\

DA-IICT

Several Clients one System

Firewall

Clientl

i

Client -
§HTMLIX
Client

Tier

-

J2EE
Application

Server
\ /i Enterprise
Enterprise Information

J?V@ Systems (EIS)

Relational

- Database,
yd
‘Enterprise Legacy
Ja@ Applications,
ERP Systems

L

Other Services: .
JNDI, JMS, Enterprise

Middle JavaMail™ Information
Tier Tier

98

A\

DA-IICT
J2SH J2EE
J2SE and J2EE
Basic libraries for java . - Based on J2SE
development Con UTILIZE EIB
o Uses other technologies
GUIs Defines a Specification
applets Components are constrained
etc to abide byinterface

specdf they abide J2EE

99

DA-IICT

Changes in J2EE 1.3 Specification

A New Container managed Persistence Model
A Support for Message Driven Beans
A Support for Enterprise Local Beans

A Finally, J2EE1.3 requires Support for
J2SE1.3

100

DA-IICT

Changes in J2EE 1.4 Specification

A Support for Web Services

A JAX-RPC and SAAJ APIs provide the basic
web services interoperability support

A JAXR API supportaccess to registries and
repositories

A IJMX API supports J2EE Management API

101

DA-IICT

Benefits of the J2EE Approach

Allows developers to develop systems without
regard of

I the operating system or hardware technology
platforms platform independence)

I The application server software that will be
used to implement (execute) the business
system(application independence

I The physical locations from which the business
system will be accesselb¢ation
transparency)

102

‘W /i

DA-IICT

Benefits of the J2EE Approach

A Allows developers to specify the resources a
business system will employ and set specific
levels for these resources without having to write
elaborate lines of code to achieve tlagr{bute
based programming:

I Example: developers can specify:

A Security levels for different users of the system

A How business system will connect to database and access data,
access remotely located objects, manage transactions,
Intercommunicate with other component, etc

A Allows for Higher productivity of systems
development team (costfective, rapid, raise of
pre-built components

103

DA-IICT

Benefits of the J2EE Approach

A Facilitates componentization in many ways:

I J2EE offers a well thouglttut approach of separating
the development aspects of a component from its
assembly specifics

I J2EE offers a wide range of APIs that can be used for
accessing and integrating products from timaglty
vendors, creating a market for software components

I J2EE offers functiorspecific or highly specialized
components optimized for specific types of roles

104

DA-IICT

J2EE Communication as Tiers

Client Tier

Web Browser
Applets.and
P a
Optional JavaBeans
Components

RS

Web Tier _
Business
Application Client -
on
Endﬂ ional
Java ns
Components

J2EE Server

105

DA-IICT

The Container Concept

I A Container is a software entity that runs
within the server and is responsible for
providing the execution environment for J2EE
components

I A Container also manage the idgcle of
components deployed within it.

I The container Is responsible for resodrce
pooling, enforcing security, and enforcing
transaction management requirements

106

V/\\

DA-IICT

J2EE Containers

A Before a component can be executed, it must be
assembled into a J2EE application and deployed
Into its container

J2EE Server

‘ Serviet JSP Page

Web Cantainer

Application
pglliantl Database

Application
Client Enterprise Enterprise
Contalner Bean Bean

Client Machine EJB Container

107

DA-IICT

EJB Container

A A container is provided by th&pplication Server
vendor to provide basic services that are required
by J2EE specification.

A An EJB programmer places their code here, and is
assured a variety of basic services are available

A EJBs are fundamental links between presentation
components (web tier) and business critical data
and systems (EIS tier).

108

DA-IICT

EJB Container

EJB Container

Client I enterprise bean

a8

; g NEJEOBect

A
1SessionBean

" EJBHome

enterprise bean2
. rEJEnh'jent

| » EntityBean
L EJBHome

1UY

A\

DA-IICT

EJB Client

A From the EJB client perspective, all interactions
are performed on objects that implement the home
and component interfaces.

110

DA-TICT

Client invocation to Remote Interfaces

'‘Other Container EJB Container
EJB Server

111

y
/
/
/
/

DA-IICT

Client Invocation to Local Interfaces

JavaBeans

EJB Container

112

V/\\

DA-IICT

Business Tier in EJB Container

Business
Tier EIS Tier

II.

- Entity Beans
Session Eﬂgns
Message-Driven

JSP Pages

E [-3
Earvlots JavaBeans

Components
(Optional)

Beans

JZ2EE Server

113

DA-IICT

Basic Services Provided by the

EJB Container

A Naming

A Transaction management

A Security

A Persistence

A Concurrency

A Life cycle management

A Messaging

A Remote client connectivity

A Database connection pooling

114

A\

DA-IICT

Web Container

A Services supported by the web container
i HTTP
I JSP
I Servlets

115

Web tier in web container

Web Tier components runs on EJB
Server under Web Container. Web
Container provides web components
naming context & Lifecycle management.

116

D

A-TICT

