
Service-Oriented Architecture

Slides are based on the book:
“Service-Oriented Architecture: Concepts, Technology, and Design”

By Thomas Erl,
Publisher: Prentice Hall PTR

• “Because the term "service-oriented" has existed for
some time, it has been used in different contexts and
for different purposes. One constant through its
existence has been that it represents a distinct
approach for separating concerns. What this means is
that logic required to solve a large problem can be
better constructed, carried out, and managed if it is
decomposed into a collection of smaller, related
pieces. Each of these pieces addresses a concern or a
specific part of the problem.

• This approach transcends technology and automation
solutions. It is an established and generic theory that
can be used to address a variety of problems. What
distinguishes the service-oriented approach to
separating concerns is the manner in which it
achieves separation.”

• “Service-oriented architecture spans both enterprise and
application architecture domains. The benefit potential offered
by SOA can only be truly realized when applied across
multiple solution environments. This is where the investment
in building reusable and interoperable services based on a
vendor-neutral communications platform can fully be
leveraged. This does not mean that the entire enterprise must
become service-oriented. SOA belongs in those areas that have
the most to gain from the features and characteristics it
introduces.

• Note that the term "SOA" does not necessarily imply a
particular architectural scope. An SOA can refer to an
application architecture or the approach used to standardize
technical architecture across the enterprise. Because of the
composable nature of SOA (meaning that individual
application-level architectures can be comprised of different
extensions and technologies), it is absolutely possible for an
organization to have more than one SOA.”

• Though we encourage independence within our business
outlets, we must still ensure that they agree to adhere to certain
baseline conventions for example, a common currency for the
exchange of goods and services, a building code that requires
signage to conform to certain parameters or perhaps a
requirement that all employees speak the same language as the
native consumers. These conventions standardize key aspects of
each business for the benefit of the consumers without
significantly imposing on the individual business's ability to
exercise self-governance.

• Similarly, service-oriented architecture (SOA) encourages
individual units of logic to exist autonomously yet not isolated
from each other. Units of logic are still required to conform to a
set of principles that allow them to evolve independently, while
still maintaining a sufficient amount of commonality and
standardization. Within SOA, these units of logic are known as
services.

How services encapsulate logic

• To retain their independence, services encapsulate
logic within a distinct context. This context can be
specific to a business task, a business entity, or some
other logical grouping.

• The concern addressed by a service can be small or
large. Therefore, the size and scope of the logic
represented by the service can vary. Further, service
logic can encompass the logic provided by other
services. In this case, one or more services are
composed into a collective.

How services relate
• Within SOA, services can be used by other services or other

programs. Regardless, the relationship between services is based on
an understanding that for services to interact, they must be aware of
each other. This awareness is achieved through the use of service
descriptions.

• A service description in its most basic format establishes the name
of the service and the data expected and returned by the service. The
manner in which services use service descriptions results in a
relationship classified as loosely coupled. For example, Next figure
illustrates that service A is aware of service B because service A is
in possession of service B's service description.

• For services to interact and accomplish something meaningful, they
must exchange information. A communications framework capable
of preserving their loosely coupled relationship is therefore required.
One such framework is messaging.

How services communicate

• After a service sends a message on its way, it loses
control of what happens to the message thereafter.

• That is why we require messages to exist as
"independent units of communication."

• This means that messages, like services, should be
autonomous.

• To that effect, messages can be outfitted with enough
intelligence to self-govern their parts of the
processing logic.

How services are designed

• Much like object-orientation, service-
orientation has become a distinct design
approach which introduces commonly
accepted principles that govern the positioning
and design of our architectural components.

How services are designed
• The application of service-orientation principles to processing

logic results in standardized service-oriented processing logic.
When a solution is comprised of units of service-oriented
processing logic, it becomes what we refer to as a service-
oriented solution.

• For the purpose of providing a preliminary introduction, let's
highlight some of the key aspects of these SOA principles
here:
– Loose coupling Services maintain a relationship that

minimizes dependencies and only requires that they retain
an awareness of each other.

– Service contract Services adhere to a communications
agreement, as defined collectively by one or more service
descriptions and related documents.

How services are designed
– Autonomy Services have control over the logic they

encapsulate.
– Abstraction Beyond what is described in the service

contract, services hide logic from the outside world.
– Reusability Logic is divided into services with the

intention of promoting reuse.
– Composability Collections of services can be coordinated

and assembled to form composite services.
– Statelessness Services minimize retaining information

specific to an activity.
– Discoverability Services are designed to be outwardly

descriptive so that they can be found and assessed via
available discovery mechanisms.

How services are designed
• With a knowledge of the components that comprise our basic

architecture and a set of design principles we can use to shape
and standardize these components, all that is missing is an
implementation platform that will allow us to pull these pieces
together to build service-oriented automation solutions.

• The Web services technology set offers us such a platform.
With a knowledge of the components that comprise our basic
architecture and a set of design principles we can use to shape
and standardize these components, all that is missing is an
implementation platform that will allow us to pull these pieces
together to build service-oriented automation solutions. The
Web services technology set offers us such a platform.

How services are built
• As we mentioned earlier, the term "service-oriented" and

various abstract SOA models existed before the arrival of Web
services.

• However, no one technology advancement has been so
suitable and successful in manifesting SOA than Web services.

• All major vendor platforms currently support the creation of
service-oriented solutions, and most do so with the
understanding that the SOA support provided is based on the
use of Web services.

• Therefore, while we fully acknowledge that achieving SOA
does not require Web services, the focus is on how SOA can
and should be realized through the use of the Web services
technology platform.

Primitive SOA
• The past few sections have described the individual

ingredients for what we call primitive SOA.
• It is labeled as such because it represents a baseline technology

architecture that is supported by current major vendor
platforms.

• All forms of SOA we explore from here on are based on and
extend this primitive model. Some of the extensions we
discuss are attainable today through the application of
advanced design techniques, while others rely on the
availability of pre-defined Web services specifications and
corresponding vendor support.

• Refer: case study 01

Summary of Key Points

• SOA and service-orientation are implementation-
agnostic paradigms that can be realized with any
suitable technology platform.

• Our primitive SOA model represents a mainstream
variation of SOA based solely on Web services and
common service-orientation principles.

• Throughout the discussions, any reference to the term
"SOA" implies the primitive SOA model.

Common characteristics of
contemporary SOA

• Major software vendors are continually conceiving new Web
services specifications and building increasingly powerful
XML and Web services support into current technology
platforms.

• The result is an extended variation of service-oriented
architecture we refer to as contemporary SOA.

• Contemporary SOA builds upon the primitive SOA model by
leveraging industry and technology advancements to further its
original ideals. Though the required implementation
technology can vary, contemporary SOAs have evolved to a
point where they can be associated with a set of common
characteristics.

Common characteristics of
contemporary SOA

Specifically, we explore the following primary characteristics:
• Contemporary SOA is at the core of the service-oriented

computing platform.
• Contemporary SOA increases quality of service.
• Contemporary SOA is fundamentally autonomous.
• Contemporary SOA is based on open standards.
• Contemporary SOA supports vendor diversity.
• Contemporary SOA fosters intrinsic interoperability.
• Contemporary SOA promotes discovery.
• Contemporary SOA promotes federation.

Common characteristics of
contemporary SOA

• Contemporary SOA promotes architectural
composability.

• Contemporary SOA fosters inherent reusability.
• Contemporary SOA emphasizes extensibility.
• Contemporary SOA supports a service-oriented

business modeling paradigm.
• Contemporary SOA implements layers of abstraction.
• Contemporary SOA promotes loose coupling

throughout the enterprise.
• Contemporary SOA promotes organizational agility.

Common characteristics of
contemporary SOA

• Contemporary SOA is a building block.
• Contemporary SOA is an evolution.
• Contemporary SOA is still maturing.
• Contemporary SOA is an achievable ideal.

Contemporary SOA is at the core of the service-
oriented computing platform

• Many argue that the manner in which SOA is used to
qualify products, designs, and technologies elevates
this term beyond one that simply relates to
architecture.

• SOA, some believe, has become synonymous with an
entire new world application computing platform.

• Because we positioned contemporary SOA as building
upon and extending the primitive SOA model, we
already have a starting point for our definition:

• Contemporary SOA represents an architecture that
promotes service-orientation through the use of Web
services.

Contemporary SOA is at the core of the service-
oriented computing platform

• With SOA, however, the actual acronym has become a
multi-purpose buzzword used frequently when
discussing an application computing platform
consisting of Web services technology and service-
orientation principles.

• Because the acronym already represents the word
"architecture" we are unfortunately subjected to
statements that can be confusing.

• Perhaps the best way to view it is that if a product,
design, or technology is prefixed with "SOA," it is
something that was (directly or indirectly) created in
support of an architecture based on service-orientation
principles.

Contemporary SOA increases
quality of service

• There is a definite need to bring SOA to a point
where it can implement enterprise-level functionality
as safely and reliably as the more established
distributed architectures already do.

• This relates to common quality of service
requirements, such as:

The ability for tasks to be carried out in a secure manner,
protecting the contents of a message, as well as access to
individual services.
Allowing tasks to be carried out reliably so that message
delivery or notification of failed delivery can be
guaranteed.

Contemporary SOA increases
quality of service

Performance requirements to ensure that the overhead
imposed by SOAP message and XML content processing
does not inhibit the execution of a task.
Transactional capabilities to protect the integrity of specific
business tasks with a guarantee that should the task fail,
exception logic is executed.

• Contemporary SOA is striving to fill the QoS gaps of
the primitive SOA model. Many of the concepts and
specifications will be discussed in “SOA and WS-*
Extensions”, which provide features that directly
address quality of service requirements.

• For lack of a better term, we'll refer to an SOA that
fulfills specific quality of service requirements as
"QoS-capable."

Contemporary SOA is
fundamentally autonomous

• The service-orientation principle of autonomy requires that
individual services be as independent and self-contained as
possible with respect to the control they maintain over their
underlying logic.

• This is further realized through message-level autonomy where
messages passed between services are sufficiently intelligence-
heavy that they can control the manner in which they are
processed by recipient services.

• SOA builds upon and expands this principle by promoting the
concept of autonomy throughout solution environments and
the enterprise. Applications comprised of autonomous
services, for example, can themselves be viewed as composite,
self-reliant services that exercise their own self-governance
within service-oriented integration environments.

Contemporary SOA is
fundamentally autonomous

• Later we explain how by creating service
abstraction layers, entire domains of solution
logic can achieve control over their respective
areas of governance.

• This establishes a level of autonomy that can
cross solution boundaries.

Contemporary SOA is based on
open standards

• Perhaps the most significant characteristic of Web services is
the fact that data exchange is governed by open standards.
After a message is sent from one Web service to another it
travels via a set of protocols that is globally standardized and
accepted.

• Further, the message itself is standardized, both in format and
in how it represents its payload. The use of SOAP, WSDL,
XML, and XML Schema allow for messages to be fully self-
contained and support the underlying agreement that to
communicate, services require nothing more than a knowledge
of each other's service descriptions.

• The use of an open, standardized messaging model eliminates
the need for underlying service logic to share type systems and
supports the loosely coupled paradigm.

Contemporary SOA is based on
open standards

• Contemporary SOAs fully leverage and
reinforce this open, vendor-neutral
communications framework in the next figure.

• An SOA limits the role of proprietary
technology to the implementation and hosting
of the application logic encapsulated by a
service. The opportunity for inter-service
communication is therefore always an option.

Contemporary SOA supports
vendor diversity

• The open communications framework explained in the
previous section not only has significant implications for
bridging much of the heterogeneity within (and between)
corporations, but it also allows organizations to choose best-
of-breed environments for specific applications.

• For example, regardless of how proprietary a development
environment is, as long as it supports the creation of standard
Web services, it can be used to create a non-proprietary service
interface layer, opening up interoperability opportunities with
other, service-capable applications.

• This, incidentally, has changed the face of integration
architectures, which now can encapsulate legacy logic through
service adapters, and leverage middleware advancements
based on Web services.

Contemporary SOA supports
vendor diversity

• Organizations can certainly continue building
solutions with existing development tools and server
products. In fact, it may make sense to do so, only to
continue leveraging the skill sets of in-house
resources.

• However, the choice to explore the offerings of new
vendors is always there. This option is made possible
by the open technology provided by the Web services
framework and is made more attainable through the
standardization and principles introduced by SOA.

Contemporary SOA promotes discovery

• Even though the first generation of Web services standards
included UDDI, few of the early implementations actually
used service registries as part of their environments. This may
have to do with the fact that not enough Web services were
actually built to warrant a registry.

• However, another likely reason is that the concept of service
discovery was simply not designed into the architecture. When
utilized within traditional distributed architectures, Web
services were more often employed to facilitate point-to-point
solutions. Therefore, discovery was not a common concern.

• SOA supports and encourages the advertisement and discovery
of services throughout the enterprise and beyond. A serious
SOA will likely rely on some form of service registry or
directory to manage service descriptions

Registries enable a mechanism for the discovery of services

Contemporary SOA fosters
intrinsic interoperability

• Further leveraging and supporting the required usage of open
standards, a vendor diverse environment, and the availability of
a discovery mechanism, is the concept of intrinsic
interoperability.

• Regardless of whether an application actually has immediate
integration requirements, design principles can be applied to
outfit services with characteristics that naturally promote
interoperability.

• When building an SOA application from the ground up,
services with intrinsic interoperability become potential
integration endpoints.

• When properly standardized, this leads to service-oriented
integration architectures wherein solutions themselves achieve a
level of intrinsic interoperability. Fostering this characteristic
can significantly alleviate the cost and effort of fulfilling future
cross-application integration requirements.

Intrinsically interoperable services enable unforeseen integration
opportunities

Contemporary SOA promotes federation

• Establishing SOA within an enterprise does not
necessarily require that you replace what you already
have. One of the most attractive aspects of this
architecture is its ability to introduce unity across
previously non-federated environments.

• While Web services enable federation, SOA promotes
this cause by establishing and standardizing the
ability to encapsulate legacy and non-legacy
application logic and by exposing it via a common,
open, and standardized communications framework
(also supported by an extensive adapter technology
marketplace).

Contemporary SOA promotes federation

• Obviously, the incorporation of SOA with
previous platforms can lead to a variety of
hybrid solutions.

• However, the key aspect is that the
communication channels achieved by this form
of service-oriented integration are all uniform
and standardized

Services enable standardized federation of disparate legacy systems

Contemporary SOA promotes
architectural composability

• Composability is a deep-rooted characteristic of SOA that can
be realized on different levels. For example, by fostering the
development and evolution of composable services, SOA
supports the automation of flexible and highly adaptive
business processes. As previously mentioned, services exist as
independent units of logic. A business process can therefore be
broken down into a series of services, each responsible for
executing a portion of the process.

• A broader example of composability is represented by the
second-generation Web services framework that is evolving
out of the release of the numerous WS-* specifications. The
modular nature of these specifications allows an SOA to be
composed of only the functional building blocks it requires.

Contemporary SOA promotes
architectural composability

• What provides this flexibility is the fact that second-generation
Web services specifications are being designed specifically to
leverage the SOAP messaging model. Individual specifications
consist of modular extensions that provide one or more specific
features.

• As the offering of WS-* extensions supported by a given vendor
platform grows, the flexibility to compose allows you to
continue building solutions that only implement the features you
actually need.

• In other words, the WS-* platform allows for the creation of
streamlined and optimized service-oriented architectures,
applications, services, and even messages.

• With respect to our definition, let's represent this characteristic
by describing the architecture as a whole as being composable.
This represents both composable services, as well as the
extensions that comprise individual SOA implementations.

Different solutions can be composed of different extensions and can continue to
interoperate as long as they support the common extensions required

Contemporary SOA fosters
inherent reusability

• SOA establishes an environment that promotes reuse on many
levels. For example, services designed according to service-
orientation principles are encouraged to promote reuse, even if
no immediate reuse requirements exist. Collections of services
that form service compositions can themselves be reused by
larger compositions.

• The emphasis placed by SOA on the creation of services that
are agnostic to both the business processes and the automation
solutions that utilize them leads to an environment in which
reuse is naturally realized as a side benefit to delivering
services for a given project. Thus, inherent reuse can be
fostered when building service-oriented solutions

Inherent reuse accommodates unforeseen reuse opportunities

Contemporary SOA emphasizes extensibility

• When expressing encapsulated functionality through a service
description, SOA encourages you to think beyond immediate,
point-to-point communication requirements.

• When service logic is properly partitioned via an appropriate
level of interface granularity, the scope of functionality offered
by a service can sometimes be extended without breaking the
established interface.

• Extensibility is also a characteristic that is promoted
throughout SOA as a whole. Extending entire solutions can be
accomplished by adding services or by merging with other
service-oriented applications (which also, effectively, "adds
services"). Because the loosely coupled relationship fostered
among all services minimizes inter-service dependencies,
extending logic can be achieved with significantly less impact.

Extensible services can expand functionality with minimal impact

Contemporary SOA emphasizes extensibility

• Time to revisit our original definition to add a few
adjectives that represent the characteristics we've
covered.

• Contemporary SOA represents an open, extensible,
federated, composable architecture that promotes
service-orientation and is comprised of autonomous,
QoS-capable, vendor diverse, interoperable,
discoverable, and potentially reusable services,
implemented as Web services.

Contemporary SOA supports a service-
oriented business modeling paradigm

• In our description of a primitive SOA, we briefly
explored how business processes can be represented
and expressed through services. Partitioning business
logic into services that can then be composed has
significant implications as to how business processes
can be modeled.

• Analysts can leverage these features by incorporating
an extent of service-orientation into business
processes for implementation through SOAs.

A collection (layer) of services encapsulating business process logic

Contemporary SOA supports a service-
oriented business modeling paradigm

• In other words, services can be designed to express
business logic. BPM models, entity models, and other
forms of business intelligence can be accurately
represented through the coordinated composition of
business-centric services.

• This is an area of SOA that is not yet widely accepted
or understood. We therefore spend a significant time
in exploring the service-oriented business modeling
paradigm.

Contemporary SOA implements
layers of abstraction

• One of the characteristics that tends to evolve naturally through
the application of service-oriented design principles is that of
abstraction. Typical SOAs can introduce layers of abstraction
by positioning services as the sole access points to a variety of
resources and processing logic.

• When applied through proper design, abstraction can be
targeted at business and application logic. For example, by
establishing a layer of endpoints that represent entire solutions
and technology platforms, all of the proprietary details
associated with these environments disappear.

• The only remaining concern is the functionality offered via the
service interfaces.

• It is the mutual abstraction of business and technology that
supports the service-oriented business modeling paradigm we
discussed and further establishes the loosely coupled enterprise
model explained in the following section.

Application logic created with proprietary technology can be abstracted
through a dedicated service layer

Contemporary SOA promotes
loose coupling throughout the enterprise

• As we've established, a core benefit to building a
technical architecture with loosely coupled services is
the resulting independence of service logic. Services
only require an awareness of each other, allowing
them to evolve independently.

• Now, let's take a step back and look at the enterprise
as a whole. Within an organization where service-
orientation principles are applied to both business
modeling and technical design, the concept of loose
coupling is amplified.

Contemporary SOA promotes
loose coupling throughout the enterprise

• By implementing standardized service abstraction
layers, a loosely coupled relationship also can be
achieved between the business and application
technology domains of an enterprise.

• Each end only requires an awareness of the other,
therefore allowing each domain to evolve more
independently. The result is an environment that can
better accommodate business and technology-related
changea quality known as organizational agility.

Through the implementation of service layers that abstract business and
application logic, the loose coupling paradigm can be applied to the enterprise as

a whole

Contemporary SOA promotes
organizational agility

• Whether the result of an internal reorganization, a corporate
merger, a change in an organization's business scope, or the
replacement of an established technology platform, an
organization's ability to accommodate change determines the
efficiency with which it can respond to unplanned events.

• Change in an organization's business logic can impact the
application technology that automates it. Change in an
organization's application technology infrastructure can impact
the business logic automated by this technology. The more
dependencies that exist between these two parts of an
enterprise, the greater the extent to which change imposes
disruption and expense.

Contemporary SOA promotes
organizational agility

• By leveraging service business representation,
service abstraction, and the loose coupling
between business and application logic
provided through the use of service layers,
SOA offers the potential to increase
organizational agility

A loosely coupled relationship between business and application technology allows
each end to more efficiently respond to changes in the other

Contemporary SOA promotes
organizational agility

• Other benefits realized through the standardization of SOA
also contribute to minimizing dependencies and increasing
overall responsiveness to change: notably, the intrinsic
interoperability that can be built into services and the open
communications framework established across integration
architectures that enable interoperability between disparate
platforms. Change imposed on any of these environments is
more easily facilitated for the same reasons a loosely coupled
state between services representing either ends of the
communication channel.

• Organizational agility is perhaps the most significant benefit
that can be realized with contemporary SOA.

Contemporary SOA is a building block

• A service-oriented application architecture will likely be one of
several within an organization committed to SOA as the
standard architectural platform. Organizations standardizing on
SOA work toward an ideal known as the service-oriented
enterprise (SOE), where all business processes are composed of
and exist as services, both logically and physically.

• When viewed in the context of SOE, the functional boundary
of an SOA represents a part of this future-state environment,
either as a standalone unit of business automation or as a
service encapsulating some or all of the business automation
logic. In responding to business model-level changes, SOAs
can be augmented to change the nature of their automation, or
they can be pulled into service-oriented integration
architectures that require the participation of multiple
applications.

Contemporary SOA is a building block

• What this all boils down to is that an individual service-
oriented application can, in its entirety, be represented by and
modeled as a single service. As mentioned earlier, there are no
limits to the scope of service encapsulation. An SOA consists
of services within services within services, to the point that a
solution based on SOA itself is one of many services within an
SOE.

• This past set of characteristics has further broadened our
definition. Let's append the definition with the following:

• SOA can establish an abstraction of business logic and
technology that may introduce changes to business process
modeling and technical architecture, resulting in a loose
coupling between these models. These changes foster service-
orientation in support of a service-oriented enterprise.

Contemporary SOA is an evolution
• SOA defines an architecture that is related to but still distinct

from its predecessors. It differs from traditional client-server
and distributed environments in that it is heavily influenced by
the concepts and principles associated with service-orientation
and Web services.

• It is similar to previous platforms in that it preserves the
successful characteristics of its predecessors and builds upon
them with distinct design patterns and a new technology set.

• For example, SOA supports and promotes reuse, as well as the
componentization and distribution of application logic. These
and other established design principles that are commonplace
in traditional distributed environments are still very much a
part of SOA.

Contemporary SOA is still maturing

• While the characteristics described so far are fundamental to
contemporary SOA, this point is obviously more of a subjective
statement of where SOA is at the moment. Even though SOA is
being positioned as the next standard application computing
platform, this transition is not yet complete. Despite the fact that
Web services are being used to implement a great deal of
application functionality, the support for a number of features
necessary for enterprise-level computing is not yet fully available.

• Standards organizations and major software vendors have
produced many specifications to address a variety of
supplementary extensions. Additionally, the next generation of
development tools and application servers promises to support a
great deal of these new technologies. When SOA platforms and
tools reach an adequate level of maturity, the utilization of Web
services can be extended to support the creation of enterprise
SOA solutions, making the ideal of a service-oriented enterprise
attainable.

Contemporary SOA is an achievable ideal

• A standardized enterprise-wide adoption of SOA is a state to
which many organizations would like to fast-forward. The
reality is that the process of transitioning to this state demands
an enormous amount of effort, discipline, and, depending on the
size of the organization, a good amount of time. Every technical
environment will undergo changes during such a migration, and
various parts of SOA will be phased in at different stages and to
varying extents. This will likely result in countless hybrid
architectures, consisting mostly of distributed environments that
are part legacy and part service-oriented.

• Further supporting this prediction is the evolving state of the
technology set that is emerging to realize enterprise-level SOAs.
As companies adopt SOA during this evolution, many will need
to retrofit their environments (and their standards) to
accommodate changes and innovations as SOA-related
specifications, standards, and products continue to mature.

Defining SOA
• Now that we've finished covering characteristics, we can finalize

our formal definition.
• Contemporary SOA represents an open, agile, extensible,

federated, composable architecture comprised of autonomous,
QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services.

• SOA can establish an abstraction of business logic and
technology that may introduce changes to business process
modeling and technical architecture, resulting in a loose coupling
between these models.

• SOA is an evolution of past platforms, preserving successful
characteristics of traditional architectures, and bringing with it
distinct principles that foster service-orientation in support of a
service-oriented enterprise.

• SOA is ideally standardized throughout an enterprise, but
achieving this state requires a planned transition and the support
of a still evolving technology set.

Defining SOA

• Though accurate, this definition of contemporary
SOA is quite detailed. For practical purposes, let's
provide a supplementary definition that can be
applied to both primitive and contemporary SOA.

• SOA is a form of technology architecture that adheres
to the principles of service-orientation. When realized
through the Web services technology platform, SOA
establishes the potential to support and promote these
principles throughout the business process and
automation domains of an enterprise.

Defining SOA:
Separating concrete characteristics

• Looking back at the list of characteristics we just
covered, we can actually split them into two groups
characteristics that represent concrete qualities that
can be realized as real extensions of SOA and those
that can be categorized as commentary or
observations.

• Collectively, these characteristics were useful for
achieving our formal definition. From here on,
though, we are more interested in exploring the
concrete characteristics only.

Defining SOA:
Separating concrete characteristics

• Let's therefore remove the following items
from our original list:

• Contemporary SOA is at the core of the
service-oriented computing platform.

• Contemporary SOA is a building block.
• Contemporary SOA is an evolution.
• Contemporary SOA is still maturing.
• Contemporary SOA is an achievable ideal.

Defining SOA:
Separating concrete characteristics

• By trimming these items, along with some
superfluous wording, we end up with the
following set of concrete characteristics.

• Contemporary SOA is generally:
– based on open standards
– architecturally composable
– capable of improving QoS

Defining SOA:
Separating concrete characteristics

• Contemporary SOA supports, fosters, or promotes:
– vendor diversity
– intrinsic interoperability
– discoverability
– federation
– inherent reusability
– extensibility
– service-oriented business modeling
– layers of abstraction
– enterprise-wide loose coupling
– organizational agility

• It is these characteristics that, when realized, provide tangible,
measurable benefits.

Services (as Web services)

Case Study
• RailCo is one of many long-time vendors used by TLS.

Historically, it was the primary air brake parts supplier TLS
relied upon. Until recently, TLS had to order parts from RailCo
via phone or fax. When a new air brake supplier surfaced,
offering competitive prices and signing up with TLS's B2B
solution, there was little need for TLS to continue exclusively
with RailCo. In fact, TLS only contacted RailCo again when its
new primary vendor could not supply a requested part.

• For RailCo to join its competitor as an online partner of TLS, it
had to conform to rules and specifications defined by TLS.
Specifically, TLS dictates that every supplier must allow TLS to
programmatically interface with their inventory control system
to submit purchase orders. Additionally, the supplier must be
able to connect to TLS's external accounting interface to submit
invoices and back-order information.

Case Study
• These policies forced RailCo to build an extension to

their accounting system, capable of interacting with
TLS's Web service-based B2B solution. After
RailCo's application went online, the most common
data exchange scenarios were as follows:

• TLS's Purchase Order Service submits electronic POs
that are received by RailCo's Order Fulfillment
Service.

• Upon shipping the order, RailCo's Invoice
Submission Service sends an electronic invoice to
TLS's Accounts Payable Service.

• Next figure illustrates these two message exchanges.

Case Study
• In the first scenario, TLS acts as the service requestor entity.

Its Purchase Order Service was the service requestor (or
service requestor agent) that initiated the interaction. Being the
recipient of the order request, the Order Fulfillment Service is
classified as the service provider (or service provider agent).
As the owner of this Web service, RailCo is the service
provider entity.

• The roles are reversed in the second scenario, where RailCo is
the service requestor entity because its Invoice Submission
Service acts as the service requestor. TLS's Accounts Payable
Service receives the invoice message, making that Web service
the service provider, and TLS the service provider entity.

Services swapping roles in different but related message exchanges

The intermediary service transitions through service provider and service
requestor roles while processing a message

Case Study
• After shipping a TLS order, RailCo's Invoice Submission Service transmits a

message containing an electronic invoice. The first TLS Web service to
receive the message is a passive intermediary called the Load Balancing
Service. Its purpose is to provide load balancing logic by checking the
current processing statistics of available TLS servers. When the server with
the lowest usage is identified, this passive intermediary routes the message
accordingly.

• Upon receiving the message from the Invoice Submission Service requestor,
the passive Load Balancing intermediary acts as the service provider. After it
has determined where the message is to be forwarded to, it changes its role to
service requestor to forward the invoice document to the destination
Accounts Payable Service provider.

• Note: The Load Balancing Service (and the upcoming Internal Policy
Service) is a form of intermediary that can be explicitly accessed as a Web
service through a WSDL or it can act as a service agent. Service agents are
intermediaries designed to intercept and process messages en route to their
ultimate destinations and are explained later on. TLS opted to develop
flexible intermediaries to fulfill requirements specific to their environments.

A passive intermediary service processing a message without altering its contents

An active intermediary service

Case Study
• TLS employs a number of active intermediaries. The

Internal Policy Service, for example, examines the
message to determine whether it is subject to any
internal policy restrictions.

• If it is, the active intermediary inserts a new header
block containing one or more policy rules used by
subsequent service providers. As with the passive
intermediary example, the active intermediary
transitions through service provider and service
requestor roles before finally forwarding the message
to the appropriate TLS service provider.

Web services acting as initial sender and ultimate receiver

Case Study

• Expanding on the previous example that demonstrated the use
of a passive intermediary, let's take a look at all the services
involved in that message exchange. In this scenario, we had the
RailCo Invoice Submission Service (acting as the service
requestor) initiating the message transmission. By receiving the
message, the Load Balancing intermediary acts as the service
provider. Upon routing the message, the intermediary
temporarily assumes the service requestor role and sends the
message to the Accounts Payable Service, another service
provider.

• These three physical services created four logical roles to
complete two service requestor-to-service provider
transmissions. There was, however, only one Web service that
initiated the transmission. This was the Invoice Submission
Service, and it is therefore considered the initial sender.
Similarly, there was only one Web service that ended the
overall activity, which makes the Accounts Payable Service the
ultimate receiver

Load Balancing Service acting as an intermediary between the initial sender
and the ultimate receiver

A service composition consisting of four members

Case Study
• When the TLS Accounts Payable Service receives an invoice,

it invokes a series of additional services to fully process the
invoice contents:

1. It first uses the Vendor Profile Service to validate the invoice
header data and link the invoice document to a vendor
account.

2. Next, the Accounts Payable Service extracts taxes and
shipping fees and directly logs all amounts into the
appropriate A/P accounts.

3. Finally, the Accounts Payable Service passes the Ledger
Service the invoice total, which it uses to update the General
Ledger.

• In this scenario our service composition consists of three
composition members, spearheaded by the Accounts Payable
Service.

The Accounts Payable Service enlisting other services in a service composition

Service models

• The roles we've explored so far are agnostic to the
nature of the functionality being provided by the Web
service. They are generic states that a service can
enter within a generic context. The manner in which
services are being utilized in the real world, though,
has led to a classification based on the nature of the
application logic they provide, as well as their
business-related roles within the overall solution.
These classifications are known as service models.

Business service model
• Within an SOA, the business service represents the most

fundamental building block. It encapsulates a distinct set of
business logic within a well-defined functional boundary. It is
fully autonomous but still not limited to executing in isolation,
as business services are frequently expected to participate in
service compositions.

• Business services are used within SOAs as follows:
– as fundamental building blocks for the representation of business logic
– to represent a corporate entity or information set
– to represent business process logic
– as service composition members

Utility service model
• Any generic Web service or service agent designed

for potential reuse can be classified as a utility
service. The key to achieving this classification is that
the reusable functionality be completely generic and
non-application specific in nature.

• Utility services are used within SOAs as follows:
– as services that enable the characteristic of reuse within

SOA
– as solution-agnostic intermediary services
– as services that promote the intrinsic interoperability

characteristic of SOA
– as the services with the highest degree of autonomy

Case Study
• In the examples we've gone through so far, we've described eight

Web services. Six of these are business services, while the other
two are utility services, as follows:
– Accounts Payable Service = business service
– Internal Policy Service = utility service
– Invoice Submission Service = business service
– Ledger Service = business service
– Load Balancing Service = utility service
– Order Fulfillment Service = business service
– Purchase Order Service = business service
– Vendor Profile Service = business service

• The Load Balancing and Internal Policy Services are classified as
utility services because they provide generic functionality that can
be reused by different types of applications.

• The application logic of the remaining services is specific to a
given business task or solution, which makes them business-
centric services.

Controller service model
• Service compositions are comprised of a set of independent services that

each contribute to the execution of the overall business task. The assembly
and coordination of these services is often a task in itself and one that can be
assigned as the primary function of a dedicated service or as the secondary
function of a service that is fully capable of executing a business task
independently. The controller service fulfills this role, acting as the parent
service to service composition members.
– Controller services are used within SOAs as follows:
– to support and implement the principle of composability
– to leverage reuse opportunities
– to support autonomy in other services

• Note that controller services themselves can become subordinate service
composition members. In this case the composition coordinated by a
controller is, in its entirety, composed into a larger composition. In this
situation there may be a master controller service that acts as the parent to
the entire service composition, as well as a sub-controller, responsible for
coordinating a portion of the composition.

A service composition consisting of a master controller, a sub-controller, four
business services, and one utility service

Case Study

• In our previous example we demonstrated how the
Accounts Payable Service initiated and coordinated a
service composition consisting of two additional
composition members. That would classify the
Accounts Payable Service as a controller service.

• The fact that we already labeled this service as a
business service does not conflict with this new
classification; a single service can be classified as
more than one service model

The Accounts Payable Service acting as a business and controller service,
composing two other business services

Service descriptions (with WSDL)

WSDL definitions enable loose coupling between services

Case Study
• For RailCo to design its B2B Web services in full compliance

with the TLS services, RailCo acquires the WSDL service
description published by TLS for their Accounts Payable
Service. This definition file then is used by developers to build
the Invoice Submission Service so that it can process SOAP
messages in accordance with the service interface
requirements defined in the TLS service descriptions.

• Further, RailCo provides TLS with a copy of the WSDL
definition for the RailCo Order Fulfillment Service. TLS
registers this service description and adds it to the list of
vendor endpoints that will receive electronic purchase orders.

Case Study
• Note that because it is TLS that defines the terms of message

exchange with other parties, RailCo developed both of its
services to meet TLS's requirements.

• The Invoice Submission Service was built as a service
requestor that issues messages compliant with the Accounts
Payable WSDL. The Order Fulfillment Service was designed
as a service provider according to published specifications by
TLS. This guarantees TLS that its Purchase Order Service
(acting as a service requestor) can continue to issue messages
in its current format and that all recipient endpoints will be
able to receive and understand them.

Each service requestor is using the WSDL of a service provider to ensure
that messages sent will be understood and accepted

Service endpoints and service descriptions

• A WSDL describes the point of contact for a service provider,
also known as the service endpoint or just endpoint. I

• t provides a formal definition of the endpoint interface (so that
requestors wishing to communicate with the service provider
know exactly how to structure request messages) and also
establishes the physical location (address) of the service.

• A WSDL service description (also known as WSDL service
definition or just WSDL definition) can be separated into two
categories:
– abstract description
– concrete description

WSDL document consisting of abstract and concrete parts that collectively
describe a service endpoint

portType, operation, and message
• The parent portType section of an abstract description provides a high-level

view of the service interface by sorting the messages a service can process
into groups of functions known as operations.

• Each operation represents a specific action performed by the service. A
service operation is comparable to a public method used by components in
traditional distributed applications. Much like component methods,
operations also have input and output parameters. Because Web services
rely exclusively on messaging-based communication, parameters are
represented as messages. Therefore, an operation consists of a set of input
and output messages.

• Note that the transmission sequence of these messages can be governed by
a predetermined message exchange pattern that also is associated with the
operation.

• Note:The term "portType" is being renamed to "interface" in version 2.0 of
the WSDL specification.

Concrete description
• For a Web service to be able to execute any of its logic, it needs for its

abstract interface definition to be connected to some real, implemented
technology. Because the execution of service application logic always
involves communication, the abstract Web service interface needs to be
connected to a physical transport protocol. This connection is defined in the
concrete description portion of the WSDL file, which consists of three related
parts:

binding, port, and service
• A WSDL description's binding describes the requirements for a service to

establish physical connections or for connections to be established with the
service. In other words, a binding represents one possible transport
technology the service can use to communicate. SOAP is the most common
form of binding, but others also are supported. A binding can apply to an
entire interface or just a specific operation.

• Related to the binding is the port, which represents the physical address at
which a service can be accessed with a specific protocol. This piece of
physical implementation data exists separately to allow location information
to be maintained independently from other aspects of the concrete
description. Within the WSDL language, the term service is used to refer to a
group of related endpoints.

Concrete description

• Note:
• The term "port" is being renamed "endpoint" in

version 2.0 of the WSDL specification. The WSDL
endpoint should not be confused with the general
term "endpoint" used to reference the point of contact
for a Web service. Though related, the term
"endpoint" is used in a much broader sense than the
WSDL endpoint, which refers to a language element
that only represents the physical address of the
service.

Case Study
• The TLS Accounts Payable Service was created to receive

invoices submitted by numerous vendors. Its associated service
description therefore has a simple abstract description
consisting of one interface definition that contains a single
operation called SubmitInvoice.

• Specified within the operation is one input and one output
message. The input message is responsible for accepting the
invoice document from a vendor service requestor (such as the
RailCo Invoice Submission Service). The output message is
used by the Accounts Payable Service to send a message of
acknowledgement indicating that the submitted invoice
document has been successfully received and that its contents
are valid. The concrete part of this service description simply
binds the operation to the SOAP protocol and provides a
location address for the Accounts Payable Service.

Metadata and service contracts
• WSDL definitions frequently rely on XSD schemas to formalize the structure of

incoming and outgoing messages. Another common supplemental service description
document is a policy. Policies can provide rules, preferences, and processing details
above and beyond what is expressed through the WSDL and XSD schema
documents.

• So now we have up to three separate documents that each describe an aspect of a
service:

– WSDL definition
– XSD schema
– policy

• Each of these three service description documents can be classified as service
metadata, as each provides information about the service. Service description
documents can be collectively viewed as establishing a service contract a set of
conditions that must be met and accepted by a potential service requestor to enable
successful communication.

• Note that a service contract can refer to additional documents or agreements not
expressed by service descriptions. For example, a Service Level Agreement (SLA)
agreed upon by the respective owners of a service provider and its requestor can be
considered part of an overall service contract.

A service contract comprised of a collection of service descriptions and
possibly additional documents

Semantic descriptions
• Most of the metadata currently provided by services focuses

on expressing technical information related to data
representation and processing requirements. However, these
service description documents generally do not prove useful in
explaining details about a service's behavioral characteristics.
In fact, the most challenging part of providing a complete
description of a Web service is in communicating its semantic
qualities.

• Examples of service semantics include:
– how a service behaves under certain conditions
– how a service will respond to a specific condition
– what specific tasks the service is most suited for

Semantic descriptions
• Most of the time service semantics are assessed by humans, either verbally

by discussing the qualities of a service with its owner, or by reading
supplementary documentation published alongside service descriptions.
The ultimate goal is to provide sufficient semantic information in a
structured manner so that, in some cases, service requestors can go as far as
to evaluate and choose suitable service providers independently.

• Semantic information is usually of greater importance when dealing with
external service providers, where your knowledge of another party's service
is limited to the information the service owner decides to publish. But even
within organizational boundaries, semantic characteristics tend to take on
greater relevance as the amount of internal Web services grows.

• Although service policies can be designed to express preferences and
assertions that communicate aspects of service behavior, efforts are
currently underway (primarily by the W3C) to continually extend the
semantic information provided by service description documents. For the
time being, we must focus on the service description capabilities offered to
us through WSDL definitions, XSD schemas, and policies.

Semantic descriptions
• As we've established, the sole requirement for one service to

contact another is access to the other service's description. As
the amount of services increases within and outside of
organizations, mechanisms for advertising and discovering
service descriptions may become necessary. For example,
central directories and registries become an option to keep track
of the many service descriptions that become available. These
repositories allow humans (and even service requestors) to:
– locate the latest versions of known service descriptions
– discover new Web services that meet certain criteria

• When the initial set of Web services standards emerged, this
eventuality was taken into account. This is why UDDI formed
part of the first generation of Web services standards. Though
not yet commonly implemented, UDDI provides us with a
registry model worth describing.

Private and public registries

• UDDI specifies a relatively accepted standard
for structuring registries that keep track of
service descriptions.

• These registries can be searched manually and
accessed programmatically via a standardized
API.

Service description locations centralized in a registry

Private and public registries
• Public registries accept registrations from any organizations, regardless of

whether they have Web services to offer. Once signed up, organizations
acting as service provider entities can register their services.

• Private registries can be implemented within organization boundaries to
provide a central repository for descriptions of all services the organization
develops, leases, or purchases.

• Following are descriptions of the primary parts that comprise UDDI
registry records.

Business entities and business services
• Each public registry record consists of a business entity containing basic

profile information about the organization (or service provider entity).
Included in this record are one or more business service areas, each of
which provides a description of the services offered by the business entity.
Business services may or may not be related to the use of Web services.

Binding templates and tModels
• You might recall that WSDL definitions stored implementation

information separately from the actual interface design. This
resulted in an interface definition that existed independently
from the transport protocols to which it was eventually bound.
Registry records follow the same logic in that they store binding
information in a separate area, called the binding template.

• Each business service can reference one or more binding
templates. The information contained in a binding template may
or may not relate to an actual service. For example, a binding
template may simply point to the address of a Web site.
However, if a Web service is being represented, then the
binding template references a tModel.

• The tModel section of a UDDI record provides pointers to
actual service descriptions

The basic structure of a UDDI business entity record

Case Study
• At any given time there are several concurrent development and

integration projects underway at TLS. Almost every project
results in the creation of new services. Some are developed as
part of service-oriented solutions, while others originate from
legacy adapters and ancillary services appended to older
distributed systems. The net result is a constantly growing pool
of unmanaged services.

• After a year-end review of past development initiatives, it was
discovered that several project teams had inadvertently built
Web services with very similar functionality. To avoid a
recurrence of redundant effort, a private registry was created.
Project teams responsible for any currently active service
descriptions were required to register their services in the
registry (and this registration process became part of the
standard development lifecycle from there on).

The TLS service registry containing pointers to current
TLS WSDL definitions.

Messaging (with SOAP)

Header blocks
• A primary characteristic of the SOAP communications framework used by

SOAs is an emphasis on creating messages that are as intelligence-heavy
and self-sufficient as possible. This results in SOAP messages achieving a
level of independence that increases the robustness and extensibility of this
messaging framework qualities that are extremely important when relying
on communication within the loosely coupled environment that Web
services require.

• Message independence is implemented through the use of header blocks,
packets of supplementary meta information stored in the envelope's header
area. Header blocks outfit a message with all of the information required
for any services with which the message comes in contact to process and
route the message in accordance with its accompanying rules, instructions,
and properties. What this means is that through the use of header blocks,
SOAP messages are capable of containing a large variety of supplemental
information related to the delivery and processing of message contents.

Header blocks
• This alleviates services from having to store and maintain

message-specific logic. It further reinforces the characteristics
of contemporary SOA related to fostering reuse,
interoperability, and composability.

• Web services can be designed with generic processing
functionality driven by various types of meta information the
service locates in the header blocks of the messages it receives.

• The use of header blocks has elevated the Web services
framework to an extensible and composable enterprise-level
computing platform. Practically all WS-* extensions are
implemented using header blocks.

Header blocks
• Examples of the types of features a message can be

outfitted with using header blocks include:
processing instructions that may be executed by
service intermediaries or the ultimate receiver
routing or workflow information associated with the
message
security measures implemented in the message
reliability rules related to the delivery of the message
context and transaction management information
correlation information (typically an identifier used to
associate a request message with a response message)

Header blocks
• These and many other features are available, and the

selection is continually growing. Because header
blocks can be based on the use of different
supplementary extensions, SOAP allows the
recognition and processing of header blocks to be
marked as optional.

• This way messages can be safely outfitted with
header blocks that implement non-critical features
from newer extensions.

• Note: Processing instructions provided in SOAP
header blocks are different from the processing
instructions natively supported by the XML language.

Case Study
• Invoices sent via SOAP messages to TLS are required to

contain a number of standard header blocks for them to be
accepted and processed by the TLS Accounts Payable Service.

• Specifically, the required header blocks include:
• A correlation identifier that conforms to a standard format and

is further extended with a value derived from the date and time
of the message transmission. The correlation identifier therefore
relates the original submission to the eventual response.

• Organization-level security credentials used for authentication
purposes. Each vendor has a security account with the TLS B2B
system, and the assigned credentials are required with every
message transmission.

• The Accounts Payable Service expects these pieces of meta
information, and the gathered rules and instructions shape its
subsequent processing of the message contents.

Message styles
• The SOAP specification was originally designed to replace

proprietary RPC protocols by allowing calls between
distributed components to be serialized into XML documents,
transported, and then deserialized into the native component
format upon arrival. As a result, much in the original version
of this specification centered around the structuring of
messages to accommodate RPC data.

• This RPC-style message runs contrary to the emphasis SOA
places on independent, intelligence-heavy messages. SOA
relies on document-style messages to enable larger payloads,
coarser interface operations, and reduced message
transmission volumes between services.

Message styles

• Note:
• Don't confuse document-style SOAP messages

with document-centric XML documents.
• The latter term generally refers to published

documents represented by XML and is used to
distinguish these types of XML documents
from those that contain application data (which
are typically referred to as data-centric XML
documents).

Case Study
• Traditionally, the submission of an invoice involved a number

of interactions between RailCo and its customer, including:
• The generation and mailing of the invoice document.
• The generation and mailing of an account statement, showing

all currently outstanding amounts owed by the customer.
• The generation and mailing of a quantity discount reminder,

explaining RailCo's volume pricing policy, and showing how
close the customer is to reaching a quantity discount based on
parts ordered to date.

• When forced to submit invoices electronically to TLS via the
Invoice Submission Service, all three of these documents
needed to be included in the same message. As a result, a single
document-style message used by RailCo is capable of providing
an invoice, an account statement, and volume discount pricing
formulas

Invoice Submission Service packaging the contents of three documents into
one SOAP message

Attachments

• To facilitate requirements for the delivery of
data not so easily formatted into an XML
document, the use of SOAP attachment
technologies exist. Each provides a different
encoding mechanism used to bundle data in its
native format with a SOAP message.

• SOAP attachments are commonly employed to
transport binary files, such as images.

Case Study
• TLS accounting policy requires that all issued purchase orders in

excess of $100,000 require the signature of a senior manager.
Further, these purchase orders are not allowed to be issued in the
standard electronic format, as the signature is required to be an
ever-present part of the document. To accommodate this
requirement, the Purchase Order Service was designed with an
alternative operation.

• The accounting system currently used by TLS offers the ability
to scan any accounting-related documents. The scanned images
are archived on a separate server and linked to the corresponding
accounting records via the archive image path. When PO cost
totals exceed the $100,000 limit, a custom-developed extension
to the accounting system invokes the alternative Purchase Order
Service operation and passes it a copy of the signed PO
document image. The service, in turn, generates a SOAP
message in which the PO document image exists as a SOAP
attachment.

Faults

• Finally, SOAP messages offer the ability to
add exception handling logic by providing an
optional fault section that can reside within the
body area.

• The typical use for this section is to store a
simple message used to deliver error condition
information when an exception occurs.

Case Study

• The before mentioned SOAP message
containing a SOAP attachment is also outfitted
with a fault area housing exception
information relating specifically to the
attached data. Should the recipient of the
SOAP message be unable to properly process
the attachment or should the attachment
encounter delivery problems, standard fault
codes and descriptions are used to generate a
response message that is returned to TLS.

Nodes
• Although Web services exist as self-contained units

of processing logic, they are reliant upon a physical
communications infrastructure to process and manage
the exchange of SOAP messages.

• Every major platform has its own implementation of
a SOAP communications server, and as a result each
vendor has labeled its own variation of this piece of
software differently.

• In abstract, the programs that services use to transmit
and receive SOAP messages are referred to as SOAP
nodes.

Node types
• As with the services that use them, the underlying SOAP nodes are given

labels that identify their type, depending on what form of processing they
are involved with in a given message processing scenario.

• Below is a list of type labels associated with SOAP nodes (in accordance
with the standard SOAP Processing Model). You'll notice that these names
are very similar to the Web service roles we discussed at the beginning.
The SOAP specification has a different use for the term "role" and instead
refers to these SOAP types or labels as concepts.

– SOAP sender SOAP node that transmits a message
– SOAP receiver SOAP node that receives a message
– SOAP intermediary SOAP node that receives and transmits a message, and

optionally processes the message prior to transmission
– initial SOAP sender the first SOAP node to transmit a message
– ultimate SOAP receiver the last SOAP node to receive a message

Case Study

• When the RailCo Invoice Submission Service sends a
SOAP message containing an invoice, the underlying
SOAP server software (representing the initial SOAP
sender node) executes the transmission of the SOAP
message via HTTP.

• Prior to the TLS Accounts Payable Service actually
receiving the invoice message, the TLS SOAP server
or listener (representing the ultimate SOAP receiver
node) receives the message first

The positioning of SOAP nodes within a message transmission

SOAP intermediaries

• The same way service intermediaries transition
through service provider and service requestor
roles, SOAP intermediary nodes move through
SOAP receiver and SOAP sender types when
processing a message.

Different types of SOAP nodes involved with processing a message

SOAP intermediaries
• SOAP nodes acting as intermediaries can be classified as

forwarding or active. When a SOAP node acts as a forwarding
intermediary, it is responsible for relaying the contents of a
message to a subsequent SOAP node. In doing so, the
intermediary will often process and alter header block
information relating to the forwarding logic it is executing. For
example, it will remove a header block it has processed, as well
as any header blocks that cannot be relayed any further.

• Active intermediary nodes are distinguished by the type of
processing they perform above and beyond forwarding-related
functions. An active intermediary is not required to limit its
processing logic to the rules and instructions provided in the
header blocks of a message it receives. It can alter existing
header blocks, insert new ones, and execute a variety of
supporting actions.

Message paths
• A message path refers to the route taken by a message from

when it is first sent until it arrives at its ultimate destination.
Therefore, a message path consists of at least one initial
sender, one ultimate receiver, and zero or more intermediaries.

• Mapping and modeling message paths becomes an
increasingly important exercise in SOAs, as the amount of
intermediary services tends to grow along with the expansion
of a service-oriented solution. Design considerations relating
to the path a message is required to travel often center around
performance, security, context management, and reliable
messaging concerns.

A message path consisting of three Web services

Message paths

• Note also that a message path is sometimes not
predetermined. The use of header blocks
processed by intermediaries can dynamically
determine the path of a message. This may be
the result of routing logic, workflow logic, or
environmental conditions.

A message path determined at runtime

Message paths

• When used within the context of SOAP nodes, this
term is qualified and therefore referred to as a SOAP
message path. While a message path in abstract can
be purely logical, the SOAP node perspective is
always focused on the actual physical transport route.

• A SOAP message path is comprised of a series of
SOAP nodes, beginning with the initial SOAP sender
and ending with the ultimate SOAP receiver. Every
node refers to a physical installation of SOAP
software, each with its own physical address

Case Study
• Revisiting our invoice submission scenario one last time, we can establish

both logical and physical views of the path along which the invoice SOAP
message travels.

• From a logical perspective, the message path is always the same. The RailCo
Invoice Submission Service requestor acts as the initial sender and is
therefore the starting point of the path. The first service provider the message
encounters is the TLS Load Balancing intermediary. This service then
becomes the next service requestor and forwards the message to the
Accounts Payable Service provider. As the last service provider along the
path, this Web service becomes the ultimate receiver. This establishes a
logical message path consisting of three services.

• The corresponding SOAP message path is not as predictable. Because the
Load Balancing Service will only decide which physical server to route a
message to when it actually receives and processes the message, the ultimate
SOAP receiver is not determined until runtime.

Summary of Key Points
• The SOAP messaging framework fulfills the need for

SOA's reliance on "independent units of
communication," by supporting the creation of
intelligence-heavy, document-style, and highly
extensible messages.

• SOAP messaging establishes a standard message
structure that includes an extensible header section
used by numerous WS-* extensions to implement
enterprise-level features.

• The SOAP node view of the Web services framework
abstracts the physical communications framework,
which consists of a series of SOAP servers.

